
Twisted Documentation
Release 16.0.0

Twisted Matrix Labs

March 15, 2016

Contents

1 Installing Twisted 3
1.1 Installing Optional Dependencies . 3

2 Twisted Core 5
2.1 Developer Guides . 5
2.2 Examples . 302
2.3 Specifications . 304
2.4 Development of Twisted . 308

3 Twisted Conch 333
3.1 Developer Guides . 333
3.2 Examples . 341

4 Twisted Mail 343
4.1 Examples . 343
4.2 Developer Guides . 343
4.3 Twisted Mail Tutorial: Building an SMTP Client from Scratch . 346

5 Twisted Names 357
5.1 Developer Guides . 357
5.2 Examples . 366

6 Twisted Pair 369
6.1 Developer Guides . 369
6.2 Examples . 371

7 Twisted Web 373
7.1 Developer Guides . 373
7.2 Examples . 440

8 Twisted Words 443
8.1 Developer Guides . 443
8.2 Examples . 448

9 Historical Documents 449
9.1 2003 . 449
9.2 Previously . 450

i

ii

Twisted Documentation, Release 16.0.0

Contents:

Contents 1

Twisted Documentation, Release 16.0.0

2 Contents

CHAPTER 1

Installing Twisted

1.1 Installing Optional Dependencies

This document describes the optional dependencies that Twisted supports. The dependencies are python packages that
Twisted’s developers have found useful either for developing Twisted itself or for developing Twisted applications.

The intended audience of this document is someone who is familiar with installing optional dependencies using pip.

If you are unfamiliar with the installation of optional dependencies, the python packaging tutorial can show you how.
For a deeper explanation of what optional dependencies are and how they are declared, please see the setuptools
documentation.

The following optional dependencies are supported:

• dev - packages that aid in the development of Twisted itself.

– TwistedChecker

– pyflakes

– twisted-dev-tools

– python-subunit

– Sphinx

– pydoctor

• tls - packages that are needed to work with TLS.

– pyOpenSSL

– service_identity

– idna

• conch - packages for working with conch/SSH.

– gmpy

– pyasn1

– cryptography

• soap - the SOAPpy package to work with SOAP.

• serial - the pyserial package to work with serial data.

• all_non_platform - installs tls, conch, soap, and serial options.

3

https://pip.pypa.io/en/latest/quickstart.html
https://packaging.python.org/en/latest/installing.html#examples
https://pythonhosted.org/setuptools/setuptools.html#declaring-extras-optional-features-with-their-own-dependencies
https://pythonhosted.org/setuptools/setuptools.html#declaring-extras-optional-features-with-their-own-dependencies
https://pypi.python.org/pypi/TwistedChecker
https://pypi.python.org/pypi/pyflakes
https://pypi.python.org/pypi/twisted-dev-tools
https://pypi.python.org/pypi/python-subunit
https://pypi.python.org/pypi/Sphinx/1.3b1
https://pypi.python.org/pypi/pydoctor
https://pypi.python.org/pypi/pyOpenSSL
https://pypi.python.org/pypi/service_identity
https://pypi.python.org/pypi/idna
https://pypi.python.org/pypi/gmpy/1.17
https://pypi.python.org/pypi/pyasn1
https://pypi.python.org/pypi/cryptography
https://pypi.python.org/pypi/SOAPpy
https://pypi.python.org/pypi/pyserial

Twisted Documentation, Release 16.0.0

• osx_platform - all_non_platform options and pyobjc to work with Objective-C apis.

• windows_platform - all_non_platform options and pypiwin32 to work with Windows’s apis.

• Installing Optional Dependencies: documentation on how to install Twisted’s optional dependencies.

4 Chapter 1. Installing Twisted

https://pypi.python.org/pypi/pyobjc
https://pypi.python.org/pypi/pypiwin32

CHAPTER 2

Twisted Core

2.1 Developer Guides

2.1.1 The Vision For Twisted

Many other documents in this repository are dedicated to defining what Twisted is. Here, I will attempt to explain not
what Twisted is, but what it should be, once I’ve met my goals with it.

First, Twisted should be fun. It began as a game, it is being used commercially in games, and it will be, I hope, an
interactive and entertaining experience for the end-user.

Twisted is a platform for developing internet applications. While Python by itself is a very powerful language, there
are many facilities it lacks which other languages have spent great attention to adding. It can do this now; Twisted is
a good (if somewhat idiosyncratic) pure-python framework or library, depending on how you treat it, and it continues
to improve.

As a platform, Twisted should be focused on integration. Ideally, all functionality will be accessible through all proto-
cols. Failing that, all functionality should be configurable through at least one protocol, with a seamless and consistent
user-interface. The next phase of development will be focusing strongly on a configuration system which will unify
many disparate pieces of the current infrastructure, and allow them to be tacked together by a non-programmer.

2.1.2 Writing Servers

Overview

This document explains how you can use Twisted to implement network protocol parsing and handling for TCP servers
(the same code can be reused for SSL and Unix socket servers). There is a separate document covering UDP.

Your protocol handling class will usually subclass twisted.internet.protocol.Protocol. Most protocol handlers inherit
either from this class or from one of its convenience children. An instance of the protocol class is instantiated per-
connection, on demand, and will go away when the connection is finished. This means that persistent configuration is
not saved in the Protocol.

The persistent configuration is kept in a Factory class, which usually inherits from twisted.internet.protocol.Factory.
The buildProtocol method of the Factory is used to create a Protocol for each new connection.

It is usually useful to be able to offer the same service on multiple ports or network addresses. This is why the
Factory does not listen to connections, and in fact does not know anything about the network. See the endpoints
documentation for more information, or IReactorTCP.listenTCP and the other IReactor*.listen* APIs for the
lower level APIs that endpoints are based on.

This document will explain each step of the way.

5

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.protocol.Protocol.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.protocol.Factory.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorTCP.listenTCP.html

Twisted Documentation, Release 16.0.0

Protocols

As mentioned above, this, along with auxiliary classes and functions, is where most of the code is. A Twisted protocol
handles data in an asynchronous manner. The protocol responds to events as they arrive from the network and the
events arrive as calls to methods on the protocol.

Here is a simple example:

from twisted.internet.protocol import Protocol

class Echo(Protocol):

def dataReceived(self, data):
self.transport.write(data)

This is one of the simplest protocols. It simply writes back whatever is written to it, and does not respond to all events.
Here is an example of a Protocol responding to another event:

from twisted.internet.protocol import Protocol

class QOTD(Protocol):

def connectionMade(self):
self.transport.write("An apple a day keeps the doctor away\r\n")
self.transport.loseConnection()

This protocol responds to the initial connection with a well known quote, and then terminates the connection.

The connectionMade event is usually where setup of the connection object happens, as well as any initial greetings
(as in the QOTD protocol above, which is actually based on RFC 865). The connectionLost event is where
tearing down of any connection-specific objects is done. Here is an example:

from twisted.internet.protocol import Protocol

class Echo(Protocol):

def __init__(self, factory):
self.factory = factory

def connectionMade(self):
self.factory.numProtocols = self.factory.numProtocols + 1
self.transport.write(

"Welcome! There are currently %d open connections.\n" %
(self.factory.numProtocols,))

def connectionLost(self, reason):
self.factory.numProtocols = self.factory.numProtocols - 1

def dataReceived(self, data):
self.transport.write(data)

Here connectionMade and connectionLost cooperate to keep a count of the active protocols in a shared
object, the factory. The factory must be passed to Echo.__init__ when creating a new instance. The factory is
used to share state that exists beyond the lifetime of any given connection. You will see why this object is called a
“factory” in the next section.

6 Chapter 2. Twisted Core

https://tools.ietf.org/html/rfc865.html

Twisted Documentation, Release 16.0.0

loseConnection() and abortConnection()

In the code above, loseConnection is called immediately after writing to the transport. The loseConnection
call will close the connection only when all the data has been written by Twisted out to the operating system, so it
is safe to use in this case without worrying about transport writes being lost. If a producer is being used with the
transport, loseConnection will only close the connection once the producer is unregistered.

In some cases, waiting until all the data is written out is not what we want. Due to network failures, or bugs or
maliciousness in the other side of the connection, data written to the transport may not be deliverable, and so even
though loseConnection was called the connection will not be lost. In these cases, abortConnection can
be used: it closes the connection immediately, regardless of buffered data that is still unwritten in the transport, or
producers that are still registered. Note that abortConnection is only available in Twisted 11.1 and newer.

Using the Protocol

In this section, you will learn how to run a server which uses your Protocol.

Here is code that will run the QOTD server discussed earlier:

from twisted.internet.protocol import Factory
from twisted.internet.endpoints import TCP4ServerEndpoint
from twisted.internet import reactor

class QOTDFactory(Factory):
def buildProtocol(self, addr):

return QOTD()

8007 is the port you want to run under. Choose something >1024
endpoint = TCP4ServerEndpoint(reactor, 8007)
endpoint.listen(QOTDFactory())
reactor.run()

In this example, I create a protocol Factory. I want to tell this factory that its job is to build QOTD protocol
instances, so I set its buildProtocol method to return instances of the QOTD class. Then, I want to listen on a
TCP port, so I make a TCP4ServerEndpoint to identify the port that I want to bind to, and then pass the factory I just
created to its listen method.

endpoint.listen() tells the reactor to handle connections to the endpoint’s address using a particular protocol,
but the reactor needs to be running in order for it to do anything. reactor.run() starts the reactor and then waits
forever for connections to arrive on the port you’ve specified. You can stop the reactor by hitting Control-C in a
terminal or calling reactor.stop().

For more information on different ways you can listen for incoming connections, see the documentation for the end-
points API. For more information on using the reactor, see the reactor overview.

Helper Protocols

Many protocols build upon similar lower-level abstractions.

For example, many popular internet protocols are line-based, containing text data terminated by line breaks (commonly
CR-LF), rather than containing straight raw data. However, quite a few protocols are mixed - they have line-based
sections and then raw data sections. Examples include HTTP/1.1 and the Freenet protocol.

For those cases, there is the LineReceiver protocol. This protocol dispatches to two different event handlers –
lineReceived and rawDataReceived. By default, only lineReceived will be called, once for each line.
However, if setRawMode is called, the protocol will call rawDataReceived until setLineMode is called,

2.1. Developer Guides 7

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.endpoints.TCP4ServerEndpoint.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.protocols.basic.LineReceiver.html

Twisted Documentation, Release 16.0.0

which returns it to using lineReceived. It also provides a method, sendLine, that writes data to the transport
along with the delimiter the class uses to split lines (by default, \r\n).

Here is an example for a simple use of the line receiver:

from twisted.protocols.basic import LineReceiver

class Answer(LineReceiver):

answers = {'How are you?': 'Fine', None: "I don't know what you mean"}

def lineReceived(self, line):
if self.answers.has_key(line):

self.sendLine(self.answers[line])
else:

self.sendLine(self.answers[None])

Note that the delimiter is not part of the line.

Several other helpers exist, such as a netstring based protocol and prefixed-message-length protocols.

State Machines

Many Twisted protocol handlers need to write a state machine to record the state they are at. Here are some pieces of
advice which help to write state machines:

• Don’t write big state machines. Prefer to write a state machine which deals with one level of abstraction at a
time.

• Don’t mix application-specific code with Protocol handling code. When the protocol handler has to make an
application-specific call, keep it as a method call.

Factories

Simpler Protocol Creation

For a factory which simply instantiates instances of a specific protocol class, there is a simpler way to implement the
factory. The default implementation of the buildProtocol method calls the protocol attribute of the factory to
create a Protocol instance, and then sets an attribute on it called factory which points to the factory itself. This
lets every Protocol access, and possibly modify, the persistent configuration. Here is an example that uses these
features instead of overriding buildProtocol:

from twisted.internet.protocol import Factory, Protocol
from twisted.internet.endpoints import TCP4ServerEndpoint
from twisted.internet import reactor

class QOTD(Protocol):

def connectionMade(self):
self.factory was set by the factory's default buildProtocol:
self.transport.write(self.factory.quote + '\r\n')
self.transport.loseConnection()

class QOTDFactory(Factory):

This will be used by the default buildProtocol to create new protocols:

8 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.protocols.basic.NetstringReceiver.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.protocols.basic.IntNStringReceiver.html

Twisted Documentation, Release 16.0.0

protocol = QOTD

def __init__(self, quote=None):
self.quote = quote or 'An apple a day keeps the doctor away'

endpoint = TCP4ServerEndpoint(reactor, 8007)
endpoint.listen(QOTDFactory("configurable quote"))
reactor.run()

If all you need is a simple factory that builds a protocol without any additional behavior, Twisted 13.1 added Fac-
tory.forProtocol, an even simpler approach.

Factory Startup and Shutdown

A Factory has two methods to perform application-specific building up and tearing down (since a Factory is frequently
persisted, it is often not appropriate to do them in __init__ or __del__, and would frequently be too early or too
late).

Here is an example of a factory which allows its Protocols to write to a special log-file:

from twisted.internet.protocol import Factory
from twisted.protocols.basic import LineReceiver

class LoggingProtocol(LineReceiver):

def lineReceived(self, line):
self.factory.fp.write(line + '\n')

class LogfileFactory(Factory):

protocol = LoggingProtocol

def __init__(self, fileName):
self.file = fileName

def startFactory(self):
self.fp = open(self.file, 'a')

def stopFactory(self):
self.fp.close()

Putting it All Together

As a final example, here’s a simple chat server that allows users to choose a username and then communicate with
other users. It demonstrates the use of shared state in the factory, a state machine for each individual protocol, and
communication between different protocols.

chat.py

from twisted.internet.protocol import Factory
from twisted.protocols.basic import LineReceiver
from twisted.internet import reactor

class Chat(LineReceiver):

2.1. Developer Guides 9

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.protocol.Factory.forProtocol.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.protocol.Factory.forProtocol.html

Twisted Documentation, Release 16.0.0

def __init__(self, users):
self.users = users
self.name = None
self.state = "GETNAME"

def connectionMade(self):
self.sendLine("What's your name?")

def connectionLost(self, reason):
if self.name in self.users:

del self.users[self.name]

def lineReceived(self, line):
if self.state == "GETNAME":

self.handle_GETNAME(line)
else:

self.handle_CHAT(line)

def handle_GETNAME(self, name):
if name in self.users:

self.sendLine("Name taken, please choose another.")
return

self.sendLine("Welcome, %s!" % (name,))
self.name = name
self.users[name] = self
self.state = "CHAT"

def handle_CHAT(self, message):
message = "<%s> %s" % (self.name, message)
for name, protocol in self.users.iteritems():

if protocol != self:
protocol.sendLine(message)

class ChatFactory(Factory):

def __init__(self):
self.users = {} # maps user names to Chat instances

def buildProtocol(self, addr):
return Chat(self.users)

reactor.listenTCP(8123, ChatFactory())
reactor.run()

The only API you might not be familiar with is listenTCP. listenTCP is the method which connects a Factory to
the network. This is the lower-level API that endpoints wraps for you.

Here’s a sample transcript of a chat session (emphasised text is entered by the user):

$ telnet 127.0.0.1 8123
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.
What's your name?
test
Name taken, please choose another.

10 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorTCP.listenTCP.html

Twisted Documentation, Release 16.0.0

bob
Welcome, bob!
hello
<alice> hi bob
twisted makes writing servers so easy!
<alice> I couldn't agree more
<carrol> yeah, it's great

2.1.3 Writing Clients

Overview

Twisted is a framework designed to be very flexible, and let you write powerful clients. The cost of this flexibility is a
few layers in the way to writing your client. This document covers creating clients that can be used for TCP, SSL and
Unix sockets. UDP is covered in a different document .

At the base, the place where you actually implement the protocol parsing and handling, is the Protocol class. This
class will usually be descended from twisted.internet.protocol.Protocol . Most protocol handlers inherit either from
this class or from one of its convenience children. An instance of the protocol class will be instantiated when you
connect to the server and will go away when the connection is finished. This means that persistent configuration is not
saved in the Protocol .

The persistent configuration is kept in a Factory class, which usually inherits from twisted.internet.protocol.Factory
(or twisted.internet.protocol.ClientFactory : see below). The default factory class just instantiates the Protocol
and then sets the protocol’s factory attribute to point to itself (the factory). This lets the Protocol access, and
possibly modify, the persistent configuration.

Protocol

As mentioned above, this and auxiliary classes and functions are where most of the code is. A Twisted protocol
handles data in an asynchronous manner. This means that the protocol never waits for an event, but rather responds to
events as they arrive from the network.

Here is a simple example:

from twisted.internet.protocol import Protocol
from sys import stdout

class Echo(Protocol):
def dataReceived(self, data):

stdout.write(data)

This is one of the simplest protocols. It just writes whatever it reads from the connection to standard output. There are
many events it does not respond to. Here is an example of a Protocol responding to another event:

from twisted.internet.protocol import Protocol

class WelcomeMessage(Protocol):
def connectionMade(self):

self.transport.write("Hello server, I am the client!\r\n")
self.transport.loseConnection()

This protocol connects to the server, sends it a welcome message, and then terminates the connection.

2.1. Developer Guides 11

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.protocol.Protocol.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.protocol.Factory.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.protocol.ClientFactory.html

Twisted Documentation, Release 16.0.0

The connectionMade event is usually where set up of the Protocol object happens, as well as any initial greet-
ings (as in the WelcomeMessage protocol above). Any tearing down of Protocol -specific objects is done in
connectionLost .

Simple, single-use clients

In many cases, the protocol only needs to connect to the server once, and the code just wants to get a connected
instance of the protocol. In those cases twisted.internet.endpoints provides the appropriate API, and in particular
connectProtocol which takes a protocol instance rather than a factory.

from twisted.internet import reactor
from twisted.internet.protocol import Protocol
from twisted.internet.endpoints import TCP4ClientEndpoint, connectProtocol

class Greeter(Protocol):
def sendMessage(self, msg):

self.transport.write("MESSAGE %s\n" % msg)

def gotProtocol(p):
p.sendMessage("Hello")
reactor.callLater(1, p.sendMessage, "This is sent in a second")
reactor.callLater(2, p.transport.loseConnection)

point = TCP4ClientEndpoint(reactor, "localhost", 1234)
d = connectProtocol(point, Greeter())
d.addCallback(gotProtocol)
reactor.run()

Regardless of the type of client endpoint, the way to set up a new connection is simply pass it to connectProtocol along
with a protocol instance. This means it’s easy to change the mechanism you’re using to connect, without changing the
rest of your program. For example, to run the greeter example over SSL, the only change required is to instantiate an
SSL4ClientEndpoint instead of a TCP4ClientEndpoint . To take advantage of this, functions and methods which
initiates a new connection should generally accept an endpoint as an argument and let the caller construct it, rather
than taking arguments like ‘host’ and ‘port’ and constructing its own.

For more information on different ways you can make outgoing connections to different types of endpoints, as well as
parsing strings into endpoints, see the documentation for the endpoints API .

You may come across code using ClientCreator , an older API which is not as flexible as the endpoint API. Rather
than calling connect on an endpoint, such code will look like this:

from twisted.internet.protocol import ClientCreator

...

creator = ClientCreator(reactor, Greeter)
d = creator.connectTCP("localhost", 1234)
d.addCallback(gotProtocol)
reactor.run()

In general, the endpoint API should be preferred in new code, as it lets the caller select the method of connecting.

ClientFactory

Still, there’s plenty of code out there that uses lower-level APIs, and a few features (such as automatic reconnection)
have not been re-implemented with endpoints yet, so in some cases they may be more convenient to use.

12 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.protocol.BaseProtocol.connectionMade.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.protocol.Protocol.connectionLost.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.endpoints.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.endpoints.connectProtocol.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.endpoints.connectProtocol.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.endpoints.SSL4ClientEndpoint.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.protocol.ClientCreator.html

Twisted Documentation, Release 16.0.0

To use the lower-level connection APIs, you will need to call one of the reactor.connect* methods directly. For these
cases, you need a ClientFactory . The ClientFactory is in charge of creating the Protocol and also receives
events relating to the connection state. This allows it to do things like reconnect in the event of a connection error.
Here is an example of a simple ClientFactory that uses the Echo protocol (above) and also prints what state the
connection is in.

from twisted.internet.protocol import Protocol, ClientFactory
from sys import stdout

class Echo(Protocol):
def dataReceived(self, data):

stdout.write(data)

class EchoClientFactory(ClientFactory):
def startedConnecting(self, connector):

print 'Started to connect.'

def buildProtocol(self, addr):
print 'Connected.'
return Echo()

def clientConnectionLost(self, connector, reason):
print 'Lost connection. Reason:', reason

def clientConnectionFailed(self, connector, reason):
print 'Connection failed. Reason:', reason

To connect this EchoClientFactory to a server, you could use this code:

from twisted.internet import reactor
reactor.connectTCP(host, port, EchoClientFactory())
reactor.run()

Note that clientConnectionFailed is called when a connection could not be established, and that clientConnectionLost
is called when a connection was made and then disconnected.

Reactor Client APIs

connectTCP IReactorTCP.connectTCP provides support for IPv4 and IPv6 TCP clients. The host argument it
accepts can be either a hostname or an IP address literal. In the case of a hostname, the reactor will automatically
resolve the name to an IP address before attempting the connection. This means that for a hostname with multiple
address records, reconnection attempts may not always go to the same server (see below). It also means that there
is name resolution overhead for each connection attempt. If you are creating many short-lived connections (typically
around hundreds or thousands per second) then you may want to resolve the hostname to an address first and then pass
the address to connectTCP instead.

Reconnection

Often, the connection of a client will be lost unintentionally due to network problems. One way to reconnect after a
disconnection would be to call connector.connect() when the connection is lost:

from twisted.internet.protocol import ClientFactory

class EchoClientFactory(ClientFactory):
def clientConnectionLost(self, connector, reason):

connector.connect()

2.1. Developer Guides 13

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.protocol.ClientFactory.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.protocol.ClientFactory.clientConnectionFailed.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.protocol.ClientFactory.clientConnectionLost.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorTCP.connectTCP.html

Twisted Documentation, Release 16.0.0

The connector passed as the first argument is the interface between a connection and a protocol. When the connection
fails and the factory receives the clientConnectionLost event, the factory can call connector.connect()
to start the connection over again from scratch.

However, most programs that want this functionality should implement ReconnectingClientFactory instead, which
tries to reconnect if a connection is lost or fails and which exponentially delays repeated reconnect attempts.

Here is the Echo protocol implemented with a ReconnectingClientFactory :

from twisted.internet.protocol import Protocol, ReconnectingClientFactory
from sys import stdout

class Echo(Protocol):
def dataReceived(self, data):

stdout.write(data)

class EchoClientFactory(ReconnectingClientFactory):
def startedConnecting(self, connector):

print 'Started to connect.'

def buildProtocol(self, addr):
print 'Connected.'
print 'Resetting reconnection delay'
self.resetDelay()
return Echo()

def clientConnectionLost(self, connector, reason):
print 'Lost connection. Reason:', reason
ReconnectingClientFactory.clientConnectionLost(self, connector, reason)

def clientConnectionFailed(self, connector, reason):
print 'Connection failed. Reason:', reason
ReconnectingClientFactory.clientConnectionFailed(self, connector,

reason)

A Higher-Level Example: ircLogBot

Overview of ircLogBot

The clients so far have been fairly simple. A more complicated example comes with Twisted Words in the
doc/words/examples directory.

ircLogBot.py

Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

"""
An example IRC log bot - logs a channel's events to a file.

If someone says the bot's name in the channel followed by a ':',
e.g.

<foo> logbot: hello!

the bot will reply:

14 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.protocol.ReconnectingClientFactory.html

Twisted Documentation, Release 16.0.0

<logbot> foo: I am a log bot

Run this script with two arguments, the channel name the bot should
connect to, and file to log to, e.g.:

$ python ircLogBot.py test test.log

will log channel #test to the file 'test.log'.

To run the script:

$ python ircLogBot.py <channel> <file>
"""

twisted imports
from twisted.words.protocols import irc
from twisted.internet import reactor, protocol
from twisted.python import log

system imports
import time, sys

class MessageLogger:
"""
An independent logger class (because separation of application
and protocol logic is a good thing).
"""
def __init__(self, file):

self.file = file

def log(self, message):
"""Write a message to the file."""
timestamp = time.strftime("[%H:%M:%S]", time.localtime(time.time()))
self.file.write('%s %s\n' % (timestamp, message))
self.file.flush()

def close(self):
self.file.close()

class LogBot(irc.IRCClient):
"""A logging IRC bot."""

nickname = "twistedbot"

def connectionMade(self):
irc.IRCClient.connectionMade(self)
self.logger = MessageLogger(open(self.factory.filename, "a"))
self.logger.log("[connected at %s]" %

time.asctime(time.localtime(time.time())))

def connectionLost(self, reason):
irc.IRCClient.connectionLost(self, reason)
self.logger.log("[disconnected at %s]" %

time.asctime(time.localtime(time.time())))
self.logger.close()

2.1. Developer Guides 15

Twisted Documentation, Release 16.0.0

callbacks for events

def signedOn(self):
"""Called when bot has succesfully signed on to server."""
self.join(self.factory.channel)

def joined(self, channel):
"""This will get called when the bot joins the channel."""
self.logger.log("[I have joined %s]" % channel)

def privmsg(self, user, channel, msg):
"""This will get called when the bot receives a message."""
user = user.split('!', 1)[0]
self.logger.log("<%s> %s" % (user, msg))

Check to see if they're sending me a private message
if channel == self.nickname:

msg = "It isn't nice to whisper! Play nice with the group."
self.msg(user, msg)
return

Otherwise check to see if it is a message directed at me
if msg.startswith(self.nickname + ":"):

msg = "%s: I am a log bot" % user
self.msg(channel, msg)
self.logger.log("<%s> %s" % (self.nickname, msg))

def action(self, user, channel, msg):
"""This will get called when the bot sees someone do an action."""
user = user.split('!', 1)[0]
self.logger.log("* %s %s" % (user, msg))

irc callbacks

def irc_NICK(self, prefix, params):
"""Called when an IRC user changes their nickname."""
old_nick = prefix.split('!')[0]
new_nick = params[0]
self.logger.log("%s is now known as %s" % (old_nick, new_nick))

For fun, override the method that determines how a nickname is changed on
collisions. The default method appends an underscore.
def alterCollidedNick(self, nickname):

"""
Generate an altered version of a nickname that caused a collision in an
effort to create an unused related name for subsequent registration.
"""
return nickname + '^'

class LogBotFactory(protocol.ClientFactory):
"""A factory for LogBots.

A new protocol instance will be created each time we connect to the server.
"""

16 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

def __init__(self, channel, filename):
self.channel = channel
self.filename = filename

def buildProtocol(self, addr):
p = LogBot()
p.factory = self
return p

def clientConnectionLost(self, connector, reason):
"""If we get disconnected, reconnect to server."""
connector.connect()

def clientConnectionFailed(self, connector, reason):
print "connection failed:", reason
reactor.stop()

if __name__ == '__main__':
initialize logging
log.startLogging(sys.stdout)

create factory protocol and application
f = LogBotFactory(sys.argv[1], sys.argv[2])

connect factory to this host and port
reactor.connectTCP("irc.freenode.net", 6667, f)

run bot
reactor.run()

ircLogBot.py connects to an IRC server, joins a channel, and logs all traffic on it to a file. It demonstrates some
of the connection-level logic of reconnecting on a lost connection, as well as storing persistent data in the Factory .

Persistent Data in the Factory

Since the Protocol instance is recreated each time the connection is made, the client needs some way to keep track
of data that should be persisted. In the case of the logging bot, it needs to know which channel it is logging, and where
to log it.

from twisted.words.protocols import irc
from twisted.internet import protocol

class LogBot(irc.IRCClient):

def connectionMade(self):
irc.IRCClient.connectionMade(self)
self.logger = MessageLogger(open(self.factory.filename, "a"))
self.logger.log("[connected at %s]" %

time.asctime(time.localtime(time.time())))

def signedOn(self):
self.join(self.factory.channel)

class LogBotFactory(protocol.ClientFactory):

2.1. Developer Guides 17

Twisted Documentation, Release 16.0.0

def __init__(self, channel, filename):
self.channel = channel
self.filename = filename

def buildProtocol(self, addr):
p = LogBot()
p.factory = self
return p

When the protocol is created, it gets a reference to the factory as self.factory . It can then access attributes of
the factory in its logic. In the case of LogBot , it opens the file and connects to the channel stored in the factory.

Factories have a default implementation of buildProtocol. It does the same thing the example above does using
the protocol attribute of the factory to create the protocol instance. In the example above, the factory could be
rewritten to look like this:

class LogBotFactory(protocol.ClientFactory):
protocol = LogBot

def __init__(self, channel, filename):
self.channel = channel
self.filename = filename

Further Reading

The Protocol class used throughout this document is a base implementation of IProtocol used in most Twisted appli-
cations for convenience. To learn about the complete IProtocol interface, see the API documentation for IProtocol
.

The transport attribute used in some examples in this document provides the ITCPTransport interface. To learn
about the complete interface, see the API documentation for ITCPTransport .

Interface classes are a way of specifying what methods and attributes an object has and how they behave. See the
Components: Interfaces and Adapters document for more information on using interfaces in Twisted.

2.1.4 Test-driven development with Twisted

Writing good code is hard, or at least it can be. A major challenge is to ensure that your code remains correct as you
add new functionality.

Unit testing is a modern, light-weight testing methodology in widespread use in many programming languages. De-
velopment that relies on unit tests is often referred to as Test-Driven Development (TDD). Most Twisted code is tested
using TDD.

To gain a solid understanding of unit testing in Python, you should read the unittest –Unit testing framework chapter
of the Python LibraryReference . There is a lot of information available online and in books.

Introductory example of Python unit testing

This document is principally a guide to Trial, Twisted’s unit testing framework. Trial is based on Python’s unit testing
framework. While we do not aim to give a comprehensive guide to general Python unit testing, it will be helpful
to consider a simple non-networked example before expanding to cover networking code that requires the special
capabilities of Trial. If you are already familiar with unit test in Python, jump straight to the section specific to testing
Twisted code .

18 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.protocol.Protocol.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IProtocol.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IProtocol.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.ITCPTransport.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.ITCPTransport.html
http://en.wikipedia.org/wiki/Unit_test
http://en.wikipedia.org/wiki/Test-driven_development
http://docs.python.org/library/unittest.html
http://docs.python.org/library/index.html

Twisted Documentation, Release 16.0.0

Note: In what follows we will make a series of refinements to some simple classes. In order to keep the examples and
source code links complete and to allow you to run Trial on the intermediate results at every stage, I add _N (where
the N are successive integers) to file names to keep them separate. This is a minor visual distraction that should be
ignored.

Creating an API and writing tests

We’ll create a library for arithmetic calculation. First, create a project structure with a directory called calculus
containing an empty __init__.py file.

Then put the following simple class definition API into calculus/base_1.py :

base_1.py

-*- test-case-name: calculus.test.test_base_1 -*-

class Calculation(object):
def add(self, a, b):

pass

def subtract(self, a, b):
pass

def multiply(self, a, b):
pass

def divide(self, a, b):
pass

(Ignore the test-case-name comment for now. You’ll see why that’s useful below .)

We’ve written the interface, but not the code. Now we’ll write a set of tests. At this point of development, we’ll be
expecting all tests to fail. Don’t worry, that’s part of the point. Once we have a test framework functioning, and we
have some decent tests written (and failing!), we’ll go and do the actual development of our calculation API. This is
the preferred way to work for many people using TDD - write tests first, make sure they fail, then do development.
Others are not so strict and write tests after doing the development.

Create a test directory beneath calculus , with an empty __init__.py file. In a
calculus/test/test_base_1.py , put the following:

test_base_1.py

from calculus.base_1 import Calculation
from twisted.trial import unittest

class CalculationTestCase(unittest.TestCase):
def test_add(self):

calc = Calculation()
result = calc.add(3, 8)
self.assertEqual(result, 11)

def test_subtract(self):
calc = Calculation()
result = calc.subtract(7, 3)
self.assertEqual(result, 4)

2.1. Developer Guides 19

Twisted Documentation, Release 16.0.0

def test_multiply(self):
calc = Calculation()
result = calc.multiply(12, 5)
self.assertEqual(result, 60)

def test_divide(self):
calc = Calculation()
result = calc.divide(12, 5)
self.assertEqual(result, 2)

You should now have the following 4 files:

calculus/__init__.py
calculus/base_1.py
calculus/test/__init__.py
calculus/test/test_base_1.py

To run the tests, there are two things you must set up. Make sure you get both done - nothing below will work unless
you do.

First, make sure that the directory that contains your calculus directory is in your Python load path. If you’re using
the Bash shell on some form of unix (e.g., Linux, Mac OS X), run PYTHONPATH="$PYTHONPATH:‘pwd‘/.."
at the command line in the calculus directory. Once you have your Python path set up correctly, you should be
able to run Python from the command line and import calculus without seeing an import error.

Second, make sure you can run the trial command. That is, make sure the directory containing the trial program
on you system is in your shell’s PATH . The easiest way to check if you have this is to try running trial --help
at the command line. If you see a list of invocation options, you’re in business. If your shell reports something
like trial: command not found , make sure you have Twisted installed properly, and that the Twisted bin
directory is in your PATH . If you don’t know how to do this, get some local help, or figure it out by searching online
for information on setting and changing environment variables for you operating system.

With those (one-time) preliminary steps out of the way, let’s perform the tests. Run trial
calculus.test.test_base_1 from the command line when you are in the directory containing the calculus
directory.

You should see the following output (though your files are probably not in /tmp):

$ trial calculus.test.test_base_1
calculus.test.test_base_1

CalculationTestCase
test_add ... [FAIL]
test_divide ... [FAIL]
test_multiply ... [FAIL]
test_subtract ... [FAIL]

===
[FAIL]
Traceback (most recent call last):

File "/tmp/calculus/test/test_base_1.py", line 8, in test_add
self.assertEqual(result, 11)

twisted.trial.unittest.FailTest: not equal:
a = None
b = 11

calculus.test.test_base_1.CalculationTestCase.test_add
===
[FAIL]

20 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

Traceback (most recent call last):
File "/tmp/calculus/test/test_base_1.py", line 23, in test_divide
self.assertEqual(result, 2)

twisted.trial.unittest.FailTest: not equal:
a = None
b = 2

calculus.test.test_base_1.CalculationTestCase.test_divide
===
[FAIL]
Traceback (most recent call last):

File "/tmp/calculus/test/test_base_1.py", line 18, in test_multiply
self.assertEqual(result, 60)

twisted.trial.unittest.FailTest: not equal:
a = None
b = 60

calculus.test.test_base_1.CalculationTestCase.test_multiply
===
[FAIL]
Traceback (most recent call last):

File "/tmp/calculus/test/test_base_1.py", line 13, in test_subtract
self.assertEqual(result, 4)

twisted.trial.unittest.FailTest: not equal:
a = None
b = 4

calculus.test.test_base_1.CalculationTestCase.test_subtract

Ran 4 tests in 0.042s

FAILED (failures=4)

How to interpret this output? You get a list of the individual tests, each followed by its result. By default, failures are
printed at the end, but this can be changed with the -e (or --rterrors) option.

One very useful thing in this output is the fully-qualified name of the failed tests. This ap-
pears at the bottom of each =-delimited area of the output. This allows you to copy and
paste it to just run a single test you’re interested in. In our example, you could run trial
calculus.test.test_base_1.CalculationTestCase.test_subtract from the shell.

Note that trial can use different reporters to modify its output. Run trial --help-reporters to see a list of
reporters.

The tests can be run by trial in multiple ways:

• trial calculus : run all the tests for the calculus package.

• trial calculus.test : run using Python’s import notation.

• trial calculus.test.test_base_1 : as above, for a specific test module. You can follow that logic
by putting your class name and even a method name to only run those specific tests.

• trial --testmodule=calculus/base_1.py : use the test-case-name comment in the first line
of calculus/base_1.py to find the tests.

• trial calculus/test : run all the tests in the test directory (not recommended).

2.1. Developer Guides 21

Twisted Documentation, Release 16.0.0

• trial calculus/test/test_base_1.py : run a specific test file (not recommended).

The first 3 versions using full qualified names are strongly encouraged: they are much more reliable and they allow
you to easily be more selective in your test runs.

You’ll notice that Trial creates a _trial_temp directory in the directory where you run the tests. This has a
file called test.log which contains the log output of the tests (created using log.msg or log.err functions).
Examine this file if you add logging to your tests.

Making the tests pass

Now that we have a working test framework in place, and our tests are failing (as expected) we can go and try to
implement the correct API. We’ll do that in a new version of the above base_1 module, calculus/base_2.py :

base_2.py

-*- test-case-name: calculus.test.test_base_2 -*-

class Calculation(object):
def add(self, a, b):

return a + b

def subtract(self, a, b):
return a - b

def multiply(self, a, b):
return a * b

def divide(self, a, b):
return a / b

We’ll also create a new version of test_base_1 which imports and tests this new implementation, in
calculus/test_base_2.py :

test_base_2.py

from calculus.base_2 import Calculation
from twisted.trial import unittest

class CalculationTestCase(unittest.TestCase):

def test_add(self):
calc = Calculation()
result = calc.add(3, 8)
self.assertEqual(result, 11)

def test_subtract(self):
calc = Calculation()
result = calc.subtract(7, 3)
self.assertEqual(result, 4)

def test_multiply(self):
calc = Calculation()
result = calc.multiply(12, 5)
self.assertEqual(result, 60)

22 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

def test_divide(self):
calc = Calculation()
result = calc.divide(12, 5)
self.assertEqual(result, 2)

is a copy of test_base_1, but with the import changed. Run trial again as above, and your tests should now pass:

$ trial calculus.test.test_base_2

Running 4 tests.
calculus.test.test_base

CalculationTestCase
test_add ... [OK]
test_divide ... [OK]
test_multiply ... [OK]
test_subtract ... [OK]

Ran 4 tests in 0.067s

PASSED (successes=4)

Factoring out common test logic

You’ll notice that our test file contains redundant code. Let’s get rid of that. Python’s unit testing framework allows
your test class to define a setUp method that is called before each test method in the class. This allows you to add
attributes to self that can be used in test methods. We’ll also add a parameterized test method to further simplify the
code.

Note that a test class may also provide the counterpart of setUp , named tearDown , which will be called after
each test (whether successful or not). tearDown is mainly used for post-test cleanup purposes. We will not use
tearDown until later.

Create calculus/test/test_base_2b.py as follows:

test_base_2b.py

from calculus.base_2 import Calculation
from twisted.trial import unittest

class CalculationTestCase(unittest.TestCase):
def setUp(self):

self.calc = Calculation()

def _test(self, operation, a, b, expected):
result = operation(a, b)
self.assertEqual(result, expected)

def test_add(self):
self._test(self.calc.add, 3, 8, 11)

2.1. Developer Guides 23

Twisted Documentation, Release 16.0.0

def test_subtract(self):
self._test(self.calc.subtract, 7, 3, 4)

def test_multiply(self):
self._test(self.calc.multiply, 6, 9, 54)

def test_divide(self):
self._test(self.calc.divide, 12, 5, 2)

Much cleaner, isn’t it?

We’ll now add some additional error tests. Testing just for successful use of the API is generally not enough, especially
if you expect your code to be used by others. Let’s make sure the Calculation class raises exceptions if someone
tries to call its methods with arguments that cannot be converted to integers.

We arrive at calculus/test/test_base_3.py :

test_base_3.py

from calculus.base_3 import Calculation
from twisted.trial import unittest

class CalculationTestCase(unittest.TestCase):
def setUp(self):

self.calc = Calculation()

def _test(self, operation, a, b, expected):
result = operation(a, b)
self.assertEqual(result, expected)

def _test_error(self, operation):
self.assertRaises(TypeError, operation, "foo", 2)
self.assertRaises(TypeError, operation, "bar", "egg")
self.assertRaises(TypeError, operation, [3], [8, 2])
self.assertRaises(TypeError, operation, {"e": 3}, {"r": "t"})

def test_add(self):
self._test(self.calc.add, 3, 8, 11)

def test_subtract(self):
self._test(self.calc.subtract, 7, 3, 4)

def test_multiply(self):
self._test(self.calc.multiply, 6, 9, 54)

def test_divide(self):
self._test(self.calc.divide, 12, 5, 2)

24 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

def test_errorAdd(self):
self._test_error(self.calc.add)

def test_errorSubtract(self):
self._test_error(self.calc.subtract)

def test_errorMultiply(self):
self._test_error(self.calc.multiply)

def test_errorDivide(self):
self._test_error(self.calc.divide)

We’ve added four new tests and one general-purpose function, _test_error . This function uses the
assertRaises method, which takes an exception class, a function to run and its arguments, and checks that calling
the function on the arguments does indeed raise the given exception.

If you run the above, you’ll see that not all tests fail. In Python it’s often valid to add and multiply objects of different
and even differing types, so the code in the add and multiply tests does not raise an exception and those tests therefore
fail. So let’s add explicit type conversion to our API class. This brings us to calculus/base_3.py :

base_3.py

-*- test-case-name: calculus.test.test_base_3 -*-

class Calculation(object):
def _make_ints(self, *args):

try:
return map(int, args)

except ValueError:
raise TypeError("Couldn't coerce arguments to integers: %s" % args)

def add(self, a, b):
a, b = self._make_ints(a, b)
return a + b

def subtract(self, a, b):
a, b = self._make_ints(a, b)
return a - b

def multiply(self, a, b):
a, b = self._make_ints(a, b)
return a * b

def divide(self, a, b):
a, b = self._make_ints(a, b)
return a / b

Here the _make_ints helper function tries to convert a list into a list of equivalent integers, and raises a TypeError
in case the conversion goes wrong.

Note: The int conversion can also raise a TypeError if passed something of the wrong type, such as a list. We’ll
just let that exception go by, as TypeError is already what we want in case something goes wrong.

2.1. Developer Guides 25

Twisted Documentation, Release 16.0.0

Twisted specific testing

Up to this point we’ve been doing fairly standard Python unit testing. With only a few cosmetic changes (most
importantly, directly importing unittest instead of using Twisted’s unittest version) we could make the above tests
run using Python’s standard library unit testing framework.

Here we will assume a basic familiarity with Twisted’s network I/O, timing, and Deferred APIs. If you haven’t already
read them, you should read the documentation on Writing Servers , Writing Clients , and Deferreds .

Now we’ll get to the real point of this tutorial and take advantage of Trial to test Twisted code.

Testing a protocol

We’ll now create a custom protocol to invoke our class from a telnet-like session. We’ll remotely call commands with
arguments and read back the response. The goal will be to test our network code without creating sockets.

Creating and testing the server

First we’ll write the tests, and then explain what they do. The first version of the remote test code is:

test_remote_1.py

from calculus.remote_1 import RemoteCalculationFactory
from twisted.trial import unittest
from twisted.test import proto_helpers

class RemoteCalculationTestCase(unittest.TestCase):
def setUp(self):

factory = RemoteCalculationFactory()
self.proto = factory.buildProtocol(('127.0.0.1', 0))
self.tr = proto_helpers.StringTransport()
self.proto.makeConnection(self.tr)

def _test(self, operation, a, b, expected):
self.proto.dataReceived('%s %d %d\r\n' % (operation, a, b))
self.assertEqual(int(self.tr.value()), expected)

def test_add(self):
return self._test('add', 7, 6, 13)

def test_subtract(self):
return self._test('subtract', 82, 78, 4)

def test_multiply(self):
return self._test('multiply', 2, 8, 16)

def test_divide(self):
return self._test('divide', 14, 3, 4)

26 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.trial.unittest.html

Twisted Documentation, Release 16.0.0

To fully understand this client, it helps a lot to be comfortable with the Factory/Protocol/Transport pattern used in
Twisted.

We first create a protocol factory object. Note that we have yet to see the RemoteCalculationFactory
class. It is in calculus/remote_1.py below. We call buildProtocol to ask the factory to build us a
protocol object that knows how to talk to our server. We then make a fake network transport, an instance of
twisted.test.proto_helpers.StringTransport class (note that test packages are generally not part of
Twisted’s public API;‘‘twisted.test.proto_helpers‘‘ is an exception). This fake transport is the key to the communica-
tions. It is used to emulate a network connection without a network. The address and port passed to buildProtocol
are typically used by the factory to choose to immediately deny remote connections; since we’re using a fake transport,
we can choose any value that will be acceptable to the factory. In this case the factory just ignores the address, so we
don’t need to pick anything in particular.

Testing protocols without the use of real network connections is both simple and recommended when testing Twisted
code. Even though there are many tests in Twisted that use the network, most good tests don’t. The problem with unit
tests and networking is that networks aren’t reliable. We cannot know that they will exhibit reasonable behavior all the
time. This creates intermittent test failures due to network vagaries. Right now we’re trying to test our Twisted code,
not network reliability. By setting up and using a fake transport, we can write 100% reliable tests. We can also test
network failures in a deterministic manner, another important part of your complete test suite.

The final key to understanding this client code is the _test method. The call to dataReceived simulates data
arriving on the network transport. But where does it arrive? It’s handed to the lineReceivedmethod of the protocol
instance (in calculus/remote_1.py below). So the client is essentially tricking the server into thinking it has
received the operation and the arguments over the network. The server (once again, see below) hands over the work
to its CalculationProxy object which in turn hands it to its Calculation instance. The result is written back
via sendLine (into the fake string transport object), and is then immediately available to the client, who fetches it
with tr.value() and checks that it has the expected value. So there’s quite a lot going on behind the scenes in the
two-line _test method above.

Finally , let’s see the implementation of this protocol. Put the following into calculus/remote_1.py :

remote_1.py

-*- test-case-name: calculus.test.test_remote_1 -*-

from twisted.protocols import basic
from twisted.internet import protocol
from calculus.base_3 import Calculation

class CalculationProxy(object):
def __init__(self):

self.calc = Calculation()
for m in ['add', 'subtract', 'multiply', 'divide']:

setattr(self, 'remote_%s' % m, getattr(self.calc, m))

class RemoteCalculationProtocol(basic.LineReceiver):
def __init__(self):

self.proxy = CalculationProxy()

def lineReceived(self, line):
op, a, b = line.split()
a = int(a)
b = int(b)
op = getattr(self.proxy, 'remote_%s' % (op,))

2.1. Developer Guides 27

Twisted Documentation, Release 16.0.0

result = op(a, b)
self.sendLine(str(result))

class RemoteCalculationFactory(protocol.Factory):
protocol = RemoteCalculationProtocol

def main():
from twisted.internet import reactor
from twisted.python import log
import sys
log.startLogging(sys.stdout)
reactor.listenTCP(0, RemoteCalculationFactory())
reactor.run()

if __name__ == "__main__":
main()

As mentioned, this server creates a protocol that inherits from basic.LineReceiver , and then a factory that uses it as pro-
tocol. The only trick is the CalculationProxy object, which calls Calculation methods through remote_*
methods. This pattern is used frequently in Twisted, because it is very explicit about what methods you are making
accessible.

If you run this test (trial calculus.test.test_remote_1), everything should be fine. You can also run
a server to test it with a telnet client. To do that, call python calculus/remote_1.py . You should have the
following output:

2008-04-25 10:53:27+0200 [-] Log opened.
2008-04-25 10:53:27+0200 [-] __main__.RemoteCalculationFactory starting on 46194
2008-04-25 10:53:27+0200 [-] Starting factory <__main__.RemoteCalculationFactory instance at 0x846a0cc>

46194 is replaced by a random port. You can then call telnet on it:

$ telnet localhost 46194
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
add 4123 9423
13546

It works!

Creating and testing the client

Of course, what we build is not particularly useful for now: we’ll now build a client for our server, to be able to use it
inside a Python program. And it will serve our next purpose.

Create calculus/test/test_client_1.py :

test_client_1.py

from calculus.client_1 import RemoteCalculationClient
from twisted.trial import unittest
from twisted.test import proto_helpers

28 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.protocols.basic.LineReceiver.html

Twisted Documentation, Release 16.0.0

class ClientCalculationTestCase(unittest.TestCase):
def setUp(self):

self.tr = proto_helpers.StringTransport()
self.proto = RemoteCalculationClient()
self.proto.makeConnection(self.tr)

def _test(self, operation, a, b, expected):
d = getattr(self.proto, operation)(a, b)
self.assertEqual(self.tr.value(), '%s %d %d\r\n' % (operation, a, b))
self.tr.clear()
d.addCallback(self.assertEqual, expected)
self.proto.dataReceived("%d\r\n" % (expected,))
return d

def test_add(self):
return self._test('add', 7, 6, 13)

def test_subtract(self):
return self._test('subtract', 82, 78, 4)

def test_multiply(self):
return self._test('multiply', 2, 8, 16)

def test_divide(self):
return self._test('divide', 14, 3, 4)

It’s really symmetric to the server test cases. The only tricky part is that we don’t use a client factory. We’re lazy, and
it’s not very useful in the client part, so we instantiate the protocol directly.

Incidentally, we have introduced a very important concept here: the tests now return a Deferred object, and the
assertion is done in a callback. When a test returns a Deferred, the reactor is run until the Deferred fires and its
callbacks run. The important thing to do here is to not forget to return the Deferred . If you do, your tests will pass
even if nothing is asserted. That’s also why it’s important to make tests fail first: if your tests pass whereas you know
they shouldn’t, there is a problem in your tests.

We’ll now add the remote client class to produce calculus/client_1.py :

client_1.py

-*- test-case-name: calculus.test.test_client_1 -*-

from twisted.protocols import basic
from twisted.internet import defer

class RemoteCalculationClient(basic.LineReceiver):
def __init__(self):

self.results = []

2.1. Developer Guides 29

Twisted Documentation, Release 16.0.0

def lineReceived(self, line):
d = self.results.pop(0)
d.callback(int(line))

def _sendOperation(self, op, a, b):
d = defer.Deferred()
self.results.append(d)
line = "%s %d %d" % (op, a, b)
self.sendLine(line)
return d

def add(self, a, b):
return self._sendOperation("add", a, b)

def subtract(self, a, b):
return self._sendOperation("subtract", a, b)

def multiply(self, a, b):
return self._sendOperation("multiply", a, b)

def divide(self, a, b):
return self._sendOperation("divide", a, b)

More good practices

Testing scheduling

When testing code that involves the passage of time, waiting e.g. for a two hour timeout to occur in a test is not very
realistic. Twisted provides a solution to this, the Clock class that allows one to simulate the passage of time.

As an example we’ll test the code for client request timeout: since our client uses TCP it can hang for a long time
(firewall, connectivity problems, etc...). So generally we need to implement timeouts on the client side. Basically it’s
just that we send a request, don’t receive a response and expect a timeout error to be triggered after a certain duration.

test_client_2.py

from calculus.client_2 import RemoteCalculationClient, ClientTimeoutError

from twisted.internet import task
from twisted.trial import unittest
from twisted.test import proto_helpers

class ClientCalculationTestCase(unittest.TestCase):
def setUp(self):

self.tr = proto_helpers.StringTransportWithDisconnection()
self.clock = task.Clock()
self.proto = RemoteCalculationClient()
self.tr.protocol = self.proto
self.proto.callLater = self.clock.callLater
self.proto.makeConnection(self.tr)

30 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.task.Clock.html

Twisted Documentation, Release 16.0.0

def _test(self, operation, a, b, expected):
d = getattr(self.proto, operation)(a, b)
self.assertEqual(self.tr.value(), '%s %d %d\r\n' % (operation, a, b))
self.tr.clear()
d.addCallback(self.assertEqual, expected)
self.proto.dataReceived("%d\r\n" % (expected,))
return d

def test_add(self):
return self._test('add', 7, 6, 13)

def test_subtract(self):
return self._test('subtract', 82, 78, 4)

def test_multiply(self):
return self._test('multiply', 2, 8, 16)

def test_divide(self):
return self._test('divide', 14, 3, 4)

def test_timeout(self):
d = self.proto.add(9, 4)
self.assertEqual(self.tr.value(), 'add 9 4\r\n')
self.clock.advance(self.proto.timeOut)
return self.assertFailure(d, ClientTimeoutError)

What happens here? We instantiate our protocol as usual, the only trick is to create the clock, and assign
proto.callLater to clock.callLater . Thus, every callLater call in the protocol will finish before
clock.advance() returns.

In the new test (test_timeout), we call clock.advance , that simulates an advance in time (logically it’s similar to
a time.sleep call). And we just have to verify that our Deferred got a timeout error.

Let’s implement that in our code.

client_2.py

-*- test-case-name: calculus.test.test_client_2 -*-

from twisted.protocols import basic
from twisted.internet import defer, reactor

class ClientTimeoutError(Exception):
pass

class RemoteCalculationClient(basic.LineReceiver):

callLater = reactor.callLater
timeOut = 60

2.1. Developer Guides 31

Twisted Documentation, Release 16.0.0

def __init__(self):
self.results = []

def lineReceived(self, line):
d, callID = self.results.pop(0)
callID.cancel()
d.callback(int(line))

def _cancel(self, d):
d.errback(ClientTimeoutError())

def _sendOperation(self, op, a, b):
d = defer.Deferred()
callID = self.callLater(self.timeOut, self._cancel, d)
self.results.append((d, callID))
line = "%s %d %d" % (op, a, b)
self.sendLine(line)
return d

def add(self, a, b):
return self._sendOperation("add", a, b)

def subtract(self, a, b):
return self._sendOperation("subtract", a, b)

def multiply(self, a, b):
return self._sendOperation("multiply", a, b)

def divide(self, a, b):
return self._sendOperation("divide", a, b)

If everything completed successfully, it is important to remember to cancel the DelayedCall returned by
callLater .

Cleaning up after tests

This chapter is mainly intended for people who want to have sockets or processes created in their tests. If it’s still not
obvious, you must try to avoid using them, because it ends up with a lot of problems, one of them being intermittent
failures. And intermittent failures are the plague of automated tests.

To actually test that, we’ll launch a server with our protocol.

test_remote_2.py

from calculus.remote_1 import RemoteCalculationFactory
from calculus.client_2 import RemoteCalculationClient

from twisted.trial import unittest
from twisted.internet import reactor, protocol

32 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

class RemoteRunCalculationTestCase(unittest.TestCase):

def setUp(self):
factory = RemoteCalculationFactory()
self.port = reactor.listenTCP(0, factory, interface="127.0.0.1")
self.client = None

def tearDown(self):
if self.client is not None:

self.client.transport.loseConnection()
return self.port.stopListening()

def _test(self, op, a, b, expected):
creator = protocol.ClientCreator(reactor, RemoteCalculationClient)
def cb(client):

self.client = client
return getattr(self.client, op)(a, b

).addCallback(self.assertEqual, expected)
return creator.connectTCP('127.0.0.1', self.port.getHost().port

).addCallback(cb)

def test_add(self):
return self._test("add", 5, 9, 14)

def test_subtract(self):
return self._test("subtract", 47, 13, 34)

def test_multiply(self):
return self._test("multiply", 7, 3, 21)

def test_divide(self):
return self._test("divide", 84, 10, 8)

Recent versions of trial will fail loudly if you remove the stopListening call, which is good.

Also, you should be aware that tearDown will be called in any case, after success or failure. So don’t expect every
object you created in the test method to be present, because your tests may have failed in the middle.

Trial also has a addCleanupmethod, which makes these kind of cleanups easy and removes the need for tearDown
. For example, you could remove the code in _test this way:

def setUp(self):
factory = RemoteCalculationFactory()
self.port = reactor.listenTCP(0, factory, interface="127.0.0.1")
self.addCleanup(self.port.stopListening)

def _test(self, op, a, b, expected):
creator = protocol.ClientCreator(reactor, RemoteCalculationClient)
def cb(client):

self.addCleanup(self.client.transport.loseConnection)
return getattr(client, op)(a, b).addCallback(self.assertEqual, expected)

return creator.connectTCP('127.0.0.1', self.port.getHost().port).addCallback(cb)

2.1. Developer Guides 33

Twisted Documentation, Release 16.0.0

This removes the need of a tearDown method, and you don’t have to check for the value of self.client: you only call
addCleanup when the client is created.

Handling logged errors

Currently, if you send an invalid command or invalid arguments to our server, it logs an exception and closes the
connection. This is a perfectly valid behavior, but for the sake of this tutorial, we want to return an error to the user if
they send invalid operators, and log any errors on server side. So we’ll want a test like this:

def test_invalidParameters(self):
self.proto.dataReceived('add foo bar\r\n')
self.assertEqual(self.tr.value(), "error\r\n")

remote_2.py

-*- test-case-name: calculus.test.test_remote_1 -*-

from twisted.protocols import basic
from twisted.internet import protocol
from twisted.python import log
from calculus.base_3 import Calculation

class CalculationProxy(object):
def __init__(self):

self.calc = Calculation()
for m in ['add', 'subtract', 'multiply', 'divide']:

setattr(self, 'remote_%s' % m, getattr(self.calc, m))

class RemoteCalculationProtocol(basic.LineReceiver):
def __init__(self):

self.proxy = CalculationProxy()

def lineReceived(self, line):
op, a, b = line.split()
op = getattr(self.proxy, 'remote_%s' % (op,))
try:

result = op(a, b)
except TypeError:

log.err()
self.sendLine("error")

else:
self.sendLine(str(result))

class RemoteCalculationFactory(protocol.Factory):
protocol = RemoteCalculationProtocol

def main():

34 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

from twisted.internet import reactor
from twisted.python import log
import sys
log.startLogging(sys.stdout)
reactor.listenTCP(0, RemoteCalculationFactory())
reactor.run()

if __name__ == "__main__":
main()

If you try something like that, it will not work. Here is the output you should have:

trial calculus.test.test_remote_3.RemoteCalculationTestCase.test_invalidParameters
calculus.test.test_remote_3

RemoteCalculationTestCase
test_invalidParameters ... [ERROR]

===
[ERROR]: calculus.test.test_remote_3.RemoteCalculationTestCase.test_invalidParameters

Traceback (most recent call last):
File "/tmp/calculus/remote_2.py", line 27, in lineReceived
result = op(a, b)

File "/tmp/calculus/base_3.py", line 11, in add
a, b = self._make_ints(a, b)

File "/tmp/calculus/base_3.py", line 8, in _make_ints
raise TypeError

exceptions.TypeError:

Ran 1 tests in 0.004s

FAILED (errors=1)

At first, you could think there is a problem, because you catch this exception. But in fact trial doesn’t let you
do that without controlling it: you must expect logged errors and clean them. To do that, you have to use the
flushLoggedErrors method. You call it with the exception you expect, and it returns the list of exceptions
logged since the start of the test. Generally, you’ll want to check that this list has the expected length, or possibly that
each exception has an expected message. We do the former in our test:

test_remote_3.py

from calculus.remote_2 import RemoteCalculationFactory
from twisted.trial import unittest
from twisted.test import proto_helpers

class RemoteCalculationTestCase(unittest.TestCase):
def setUp(self):

factory = RemoteCalculationFactory()
self.proto = factory.buildProtocol(('127.0.0.1', 0))
self.tr = proto_helpers.StringTransport()
self.proto.makeConnection(self.tr)

def _test(self, operation, a, b, expected):
self.proto.dataReceived('%s %d %d\r\n' % (operation, a, b))
self.assertEqual(int(self.tr.value()), expected)

2.1. Developer Guides 35

Twisted Documentation, Release 16.0.0

def test_add(self):
return self._test('add', 7, 6, 13)

def test_subtract(self):
return self._test('subtract', 82, 78, 4)

def test_multiply(self):
return self._test('multiply', 2, 8, 16)

def test_divide(self):
return self._test('divide', 14, 3, 4)

def test_invalidParameters(self):
self.proto.dataReceived('add foo bar\r\n')
self.assertEqual(self.tr.value(), "error\r\n")
errors = self.flushLoggedErrors(TypeError)
self.assertEqual(len(errors), 1)

Resolve a bug

A bug was left over during the development of the timeout (probably several bugs, but that’s not the point), concerning
the reuse of the protocol when you got a timeout: the connection is not dropped, so you can get timeout forever.
Generally a user will come to you saying “I have this strange problem on my crappy network. It seems you could
solve it with doing XXX at YYY.”

Actually, this bug can be corrected several ways. But if you correct it without adding tests, one day you’ll face a big
problem: regression. So the first step is adding a failing test.

test_client_3.py

from calculus.client_3 import RemoteCalculationClient, ClientTimeoutError

from twisted.internet import task
from twisted.trial import unittest
from twisted.test import proto_helpers

class ClientCalculationTestCase(unittest.TestCase):
def setUp(self):

self.tr = proto_helpers.StringTransportWithDisconnection()
self.clock = task.Clock()
self.proto = RemoteCalculationClient()
self.tr.protocol = self.proto
self.proto.callLater = self.clock.callLater
self.proto.makeConnection(self.tr)

def _test(self, operation, a, b, expected):
d = getattr(self.proto, operation)(a, b)
self.assertEqual(self.tr.value(), '%s %d %d\r\n' % (operation, a, b))
self.tr.clear()

36 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

d.addCallback(self.assertEqual, expected)
self.proto.dataReceived("%d\r\n" % (expected,))
return d

def test_add(self):
return self._test('add', 7, 6, 13)

def test_subtract(self):
return self._test('subtract', 82, 78, 4)

def test_multiply(self):
return self._test('multiply', 2, 8, 16)

def test_divide(self):
return self._test('divide', 14, 3, 4)

def test_timeout(self):
d = self.proto.add(9, 4)
self.assertEqual(self.tr.value(), 'add 9 4\r\n')
self.clock.advance(self.proto.timeOut)
return self.assertFailure(d, ClientTimeoutError)

def test_timeoutConnectionLost(self):
called = []
def lost(arg):

called.append(True)
self.proto.connectionLost = lost

d = self.proto.add(9, 4)
self.assertEqual(self.tr.value(), 'add 9 4\r\n')
self.clock.advance(self.proto.timeOut)

def check(ignore):
self.assertEqual(called, [True])

return self.assertFailure(d, ClientTimeoutError).addCallback(check)

What have we done here ?

• We switched to StringTransportWithDisconnection. This transport manages loseConnection and forwards
it to its protocol.

• We assign the protocol to the transport via the protocol attribute.

• We check that after a timeout our connection has closed.

For doing that, we then use the TimeoutMixin class, that does almost everything we want. The great thing is that it
almost changes nothing to our class.

client_3.py

-*- test-case-name: calculus.test.test_client -*-

from twisted.protocols import basic, policies
from twisted.internet import defer

2.1. Developer Guides 37

Twisted Documentation, Release 16.0.0

class ClientTimeoutError(Exception):
pass

class RemoteCalculationClient(object, basic.LineReceiver, policies.TimeoutMixin):

def __init__(self):
self.results = []
self._timeOut = 60

def lineReceived(self, line):
self.setTimeout(None)
d = self.results.pop(0)
d.callback(int(line))

def timeoutConnection(self):
for d in self.results:

d.errback(ClientTimeoutError())
self.transport.loseConnection()

def _sendOperation(self, op, a, b):
d = defer.Deferred()
self.results.append(d)
line = "%s %d %d" % (op, a, b)
self.sendLine(line)
self.setTimeout(self._timeOut)
return d

def add(self, a, b):
return self._sendOperation("add", a, b)

def subtract(self, a, b):
return self._sendOperation("subtract", a, b)

def multiply(self, a, b):
return self._sendOperation("multiply", a, b)

def divide(self, a, b):
return self._sendOperation("divide", a, b)

Testing Deferreds without the reactor

Above we learned about returning Deferreds from test methods in order to make assertions about their results, or
side-effects that only happen after they fire. This can be useful, but we don’t actually need the feature in this example.
Because we were careful to use Clock , we don’t need the global reactor to run in our tests. Instead of returning
the Deferred with a callback attached to it which performs the necessary assertions, we can use a testing helper,
successResultOf (and the corresponding error-case helper failureResultOf), to extract its result and make assertions

38 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.trial.unittest.SynchronousTestCase.successResultOf.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.trial.unittest.SynchronousTestCase.failureResultOf.html

Twisted Documentation, Release 16.0.0

against it directly. Compared to returning a Deferred, this avoids the problem of forgetting to return the Deferred,
improves the stack trace reported when the assertion fails, and avoids the complexity of using global reactor (which,
for example, may then require cleanup).

test_client_4.py

from calculus.client_3 import RemoteCalculationClient, ClientTimeoutError

from twisted.internet import task
from twisted.trial import unittest
from twisted.test import proto_helpers

class ClientCalculationTestCase(unittest.TestCase):
def setUp(self):

self.tr = proto_helpers.StringTransportWithDisconnection()
self.clock = task.Clock()
self.proto = RemoteCalculationClient()
self.tr.protocol = self.proto
self.proto.callLater = self.clock.callLater
self.proto.makeConnection(self.tr)

def _test(self, operation, a, b, expected):
d = getattr(self.proto, operation)(a, b)
self.assertEqual(self.tr.value(), '%s %d %d\r\n' % (operation, a, b))
self.tr.clear()
self.proto.dataReceived("%d\r\n" % (expected,))
self.assertEqual(expected, self.successResultOf(d))

def test_add(self):
self._test('add', 7, 6, 13)

def test_subtract(self):
self._test('subtract', 82, 78, 4)

def test_multiply(self):
self._test('multiply', 2, 8, 16)

def test_divide(self):
self._test('divide', 14, 3, 4)

def test_timeout(self):
d = self.proto.add(9, 4)
self.assertEqual(self.tr.value(), 'add 9 4\r\n')
self.clock.advance(self.proto.timeOut)
self.failureResultOf(d).trap(ClientTimeoutError)

def test_timeoutConnectionLost(self):
called = []
def lost(arg):

called.append(True)

2.1. Developer Guides 39

Twisted Documentation, Release 16.0.0

self.proto.connectionLost = lost

d = self.proto.add(9, 4)
self.assertEqual(self.tr.value(), 'add 9 4\r\n')
self.clock.advance(self.proto.timeOut)

def check(ignore):
self.assertEqual(called, [True])

self.failureResultOf(d).trap(ClientTimeoutError)
self.assertEqual(called, [True])

This version of the code makes the same assertions, but no longer returns any Deferreds from any test meth-
ods. Instead of making assertions about the result of the Deferred in a callback, it makes the assertions as
soon as it knows the Deferred is supposed to have a result (in the _test method and in test_timeout and
test_timeoutConnectionLost). The possibility of knowing exactly when a Deferred is supposed to have a
test is what makes successResultOf useful in unit testing, but prevents it from being applicable to non-testing
purposes.

successResultOf will raise an exception (failing the test) if the Deferred passed to it does not have a result, or
has a failure result. Similarly, failureResultOf will raise an exception (also failing the test) if the Deferred
passed to it does not have a result, or has a success result. There is a third helper method for testing the final case,
assertNoResult , which only raises an exception (failing the test) if the Deferred passed to it has a result (either
success or failure).

Dropping into a debugger

In the course of writing and running your tests, it is often helpful to employ the use of a debugger. This can be
particularly helpful in tracking down where the source of a troublesome bug is in your code. Python’s standard library
includes a debugger in the form of the pdb module. Running your tests with pdb is as simple as invoking twisted with
the --debug option, which will start pdb at the beginning of the execution of your test suite.

Trial also provides a --debugger option which can run your test suite using another debugger instead. To specify a
debugger other than pdb , pass in the fully-qualified name of an object that provides the same interface as pdb . Most
third-party debuggers tend to implement an interface similar to pdb , or at least provide a wrapper object that does.
For example, invoking trial with the line trial --debug --debugger pudb will open the PuDB debugger
instead, provided it is properly installed.

Code coverage

Code coverage is one of the aspects of software testing that shows how much your tests cross (cover) the code of your
program. There are different kinds of measures: path coverage, condition coverage, statement coverage... We’ll only
consider statement coverage here, whether a line has been executed or not.

Trial has an option to generate the statement coverage of your tests. This option is –coverage. It creates a coverage
directory in _trial_temp, with a file .cover for every module used during the tests. The ones interesting for us are
calculus.base.cover and calculus.remote.cover. Each line starts with a counter showing how many times the line was
executed during the tests, or the marker ‘>>>>>>’ if the line was not covered. If you went through the whole tutorial
to this point, you should have complete coverage :).

Again, this is only another useful pointer, but it doesn’t mean your code is perfect: your tests should consider every
possible input and output, to get full coverage (condition, path, etc.) as well .

Conclusion

So what did you learn in this document?

40 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.trial.unittest.SynchronousTestCase.assertNoResult.html
http://docs.python.org/library/pdb.html
http://pypi.python.org/pypi/pudb

Twisted Documentation, Release 16.0.0

• How to use the trial command-line tool to run your tests

• How to use string transports to test individual clients and servers without creating sockets

• If you really want to create sockets, how to cleanly do it so that it doesn’t have bad side effects

• And some small tips you can’t live without.

If one of the topics still looks cloudy to you, please give us your feedback! You can file tickets to improve this
document - learn how to contribute on the Twisted web site.

2.1.5 Twisted from Scratch, or The Evolution of Finger

The Evolution of Finger: building a simple finger service

Introduction

This is the first part of the Twisted tutorial Twisted from Scratch, or The Evolution of Finger .

If you’re not familiar with ‘finger’ it’s probably because it’s not used as much nowadays as it used to be. Basically, if
you run finger nail or finger nail@example.com the target computer spits out some information about
the user named nail . For instance:

Login: nail Name: Nail Sharp
Directory: /home/nail Shell: /usr/bin/sh
Last login Wed Mar 31 18:32 2004 (PST)
New mail received Thu Apr 1 10:50 2004 (PST)

Unread since Thu Apr 1 10:50 2004 (PST)
No Plan.

If the target computer does not have the fingerd daemon running you’ll get a “Connection Refused” error. Paranoid
sysadmins keep fingerd off or limit the output to hinder crackers and harassers. The above format is the standard
fingerd default, but an alternate implementation can output anything it wants, such as automated responsibility
status for everyone in an organization. You can also define pseudo “users”, which are essentially keywords.

This portion of the tutorial makes use of factories and protocols as introduced in the Writing a TCP Server howto
and deferreds as introduced in Using Deferreds and Generating Deferreds . Services and applications are discussed in
Using the Twisted Application Framework .

By the end of this section of the tutorial, our finger server will answer TCP finger requests on port 1079, and will read
data from the web.

Refuse Connections

finger01.py

from twisted.internet import reactor
reactor.run()

This example only runs the reactor. It will consume almost no CPU resources. As it is not listening on any port, it
can’t respond to network requests — nothing at all will happen until we interrupt the program. At this point if you run
finger nail or telnet localhost 1079 , you’ll get a “Connection refused” error since there’s no daemon
running to respond. Not very useful, perhaps — but this is the skeleton inside which the Twisted program will grow.

As implied above, at various points in this tutorial you’ll want to observe the behavior of the server being developed.
Unless you have a finger program which can use an alternate port, the easiest way to do this is with a telnet client.
telnet localhost 1079 will connect to the local host on port 1079, where a finger server will eventually be
listening.

2.1. Developer Guides 41

http://twistedmatrix.com/trac/wiki/TwistedDevelopment/

Twisted Documentation, Release 16.0.0

The Reactor You don’t call Twisted, Twisted calls you. The reactor is Twisted’s main event loop, similar to the
main loop in other toolkits available in Python (Qt, wx, and Gtk). There is exactly one reactor in any running Twisted
application. Once started it loops over and over again, responding to network events and making scheduled calls to
code.

Note that there are actually several different reactors to choose from; from twisted.internet import
reactor returns the current reactor. If you haven’t chosen a reactor class yet, it automatically chooses the default.
See the Reactor Basics HOWTO for more information.

Do Nothing

finger02.py

from twisted.internet import protocol, reactor

class FingerProtocol(protocol.Protocol):
pass

class FingerFactory(protocol.ServerFactory):
protocol = FingerProtocol

reactor.listenTCP(1079, FingerFactory())
reactor.run()

Here, reactor.listenTCP opens port 1079. (The number 1079 is a reminder that eventually we want to run on
port 79, the standard port for finger servers.) The specified factory, FingerFactory , is used to handle incoming
requests on that port. Specifically, for each request, the reactor calls the factory’s buildProtocol method, which
in this case causes FingerProtocol to be instantiated. Since the protocol defined here does not actually respond
to any events, connections to 1079 will be accepted, but the input ignored.

A Factory is the proper place for data that you want to make available to the protocol instances, since the protocol
instances are garbage collected when the connection is closed.

Drop Connections

finger03.py

from twisted.internet import protocol, reactor

class FingerProtocol(protocol.Protocol):
def connectionMade(self):

self.transport.loseConnection()

class FingerFactory(protocol.ServerFactory):
protocol = FingerProtocol

reactor.listenTCP(1079, FingerFactory())
reactor.run()

Here we add to the protocol the ability to respond to the event of beginning a connection — by terminating it. Perhaps
not an interesting behavior, but it is already close to behaving according to the letter of the standard finger protocol.
After all, there is no requirement to send any data to the remote connection in the standard. The only problem, as far
as the standard is concerned, is that we terminate the connection too soon. A client which is slow enough will see his
send() of the username result in an error.

42 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.reactor.html

Twisted Documentation, Release 16.0.0

Read Username, Drop Connections

finger04.py

from twisted.internet import protocol, reactor
from twisted.protocols import basic

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):

self.transport.loseConnection()

class FingerFactory(protocol.ServerFactory):
protocol = FingerProtocol

reactor.listenTCP(1079, FingerFactory())
reactor.run()

Here we make FingerProtocol inherit from LineReceiver , so that we get data-based events on a line-by-line
basis. We respond to the event of receiving the line with shutting down the connection.

If you use a telnet client to interact with this server, the result will look something like this:

$ telnet localhost 1079
Trying 127.0.0.1...
Connected to localhost.localdomain.
alice
Connection closed by foreign host.

Congratulations, this is the first standard-compliant version of the code. However, usually people actually expect some
data about users to be transmitted.

Read Username, Output Error, Drop Connections

finger05.py

from twisted.internet import protocol, reactor
from twisted.protocols import basic

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):

self.transport.write("No such user\r\n")
self.transport.loseConnection()

class FingerFactory(protocol.ServerFactory):
protocol = FingerProtocol

reactor.listenTCP(1079, FingerFactory())
reactor.run()

Finally, a useful version. Granted, the usefulness is somewhat limited by the fact that this version only prints out a
“No such user” message. It could be used for devastating effect in honey-pots (decoy servers), of course.

Output From Empty Factory

finger06.py

2.1. Developer Guides 43

https://twistedmatrix.com/documents/16.0.0/api/twisted.protocols.basic.LineReceiver.html

Twisted Documentation, Release 16.0.0

Read username, output from empty factory, drop connections

from twisted.internet import protocol, reactor
from twisted.protocols import basic

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):

self.transport.write(self.factory.getUser(user)+"\r\n")
self.transport.loseConnection()

class FingerFactory(protocol.ServerFactory):
protocol = FingerProtocol

def getUser(self, user):
return "No such user"

reactor.listenTCP(1079, FingerFactory())
reactor.run()

The same behavior, but finally we see what usefulness the factory has: as something that does not get constructed for
every connection, it can be in charge of the user database. In particular, we won’t have to change the protocol if the
user database back-end changes.

Output from Non-empty Factory

finger07.py

Read username, output from non-empty factory, drop connections

from twisted.internet import protocol, reactor
from twisted.protocols import basic

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):

self.transport.write(self.factory.getUser(user)+"\r\n")
self.transport.loseConnection()

class FingerFactory(protocol.ServerFactory):
protocol = FingerProtocol

def __init__(self, **kwargs):
self.users = kwargs

def getUser(self, user):
return self.users.get(user, "No such user")

reactor.listenTCP(1079, FingerFactory(moshez='Happy and well'))
reactor.run()

Finally, a really useful finger database. While it does not supply information about logged in users, it could be used to
distribute things like office locations and internal office numbers. As hinted above, the factory is in charge of keeping
the user database: note that the protocol instance has not changed. This is starting to look good: we really won’t have
to keep tweaking our protocol.

44 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

Use Deferreds

finger08.py

Read username, output from non-empty factory, drop connections
Use deferreds, to minimize synchronicity assumptions

from twisted.internet import protocol, reactor, defer
from twisted.protocols import basic

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):

d = self.factory.getUser(user)

def onError(err):
return 'Internal error in server'

d.addErrback(onError)

def writeResponse(message):
self.transport.write(message + '\r\n')
self.transport.loseConnection()

d.addCallback(writeResponse)

class FingerFactory(protocol.ServerFactory):
protocol = FingerProtocol

def __init__(self, **kwargs):
self.users = kwargs

def getUser(self, user):
return defer.succeed(self.users.get(user, "No such user"))

reactor.listenTCP(1079, FingerFactory(moshez='Happy and well'))
reactor.run()

But, here we tweak it just for the hell of it. Yes, while the previous version worked, it did assume the result of getUser
is always immediately available. But what if instead of an in-memory database, we would have to fetch the result
from a remote Oracle server? By allowing getUser to return a Deferred, we make it easier for the data to be retrieved
asynchronously so that the CPU can be used for other tasks in the meanwhile.

As described in the Deferred HOWTO , Deferreds allow a program to be driven by events. For instance, if one task
in a program is waiting on data, rather than have the CPU (and the program!) idly waiting for that data (a process
normally called ‘blocking’), the program can perform other operations in the meantime, and waits for some signal that
data is ready to be processed before returning to that process.

In brief, the code in FingerFactory above creates a Deferred, to which we start to attach callbacks . The de-
ferred action in FingerFactory is actually a fast-running expression consisting of one dictionary method, get .
Since this action can execute without delay, FingerFactory.getUser uses defer.succeed to create a De-
ferred which already has a result, meaning its return value will be passed immediately to the first callback function,
which turns out to be FingerProtocol.writeResponse . We’ve also defined an errback (appropriately named
FingerProtocol.onError) that will be called instead of writeResponse if something goes wrong.

Run ‘finger’ Locally

finger09.py

2.1. Developer Guides 45

Twisted Documentation, Release 16.0.0

Read username, output from factory interfacing to OS, drop connections

from twisted.internet import protocol, reactor, defer, utils
from twisted.protocols import basic

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):

d = self.factory.getUser(user)

def onError(err):
return 'Internal error in server'

d.addErrback(onError)

def writeResponse(message):
self.transport.write(message + '\r\n')
self.transport.loseConnection()

d.addCallback(writeResponse)

class FingerFactory(protocol.ServerFactory):
protocol = FingerProtocol

def getUser(self, user):
return utils.getProcessOutput("finger", [user])

reactor.listenTCP(1079, FingerFactory())
reactor.run()

This example also makes use of a Deferred. twisted.internet.utils.getProcessOutput is a non-
blocking version of Python’s commands.getoutput : it runs a shell command (finger , in this case) and
captures its standard output. However, getProcessOutput returns a Deferred instead of the output itself. Since
FingerProtocol.lineReceived is already expecting a Deferred to be returned by getUser , it doesn’t need
to be changed, and it returns the standard output as the finger result.

Note that in this case the shell’s built-in finger command is simply run with whatever arguments it is given. This is
probably insecure, so you probably don’t want a real server to do this without a lot more validation of the user input.
This will do exactly what the standard version of the finger server does.

Read Status from the Web

The web. That invention which has infiltrated homes around the world finally gets through to our invention. In this case
we use the built-in Twisted web client via twisted.web.client.getPage , a non-blocking version of Python’s
urllib2.urlopen(URL).read . Like getProcessOutput it returns a Deferred which will be called back
with a string, and can thus be used as a drop-in replacement.

Thus, we have examples of three different database back-ends, none of which change the protocol class. In fact, we
will not have to change the protocol again until the end of this tutorial: we have achieved, here, one truly usable class.

finger10.py

Read username, output from factory interfacing to web, drop connections

from twisted.internet import protocol, reactor, defer, utils
from twisted.protocols import basic
from twisted.web import client

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):

46 Chapter 2. Twisted Core

http://docs.python.org/2.7/library/urllib2.html#urllib2.urlopen

Twisted Documentation, Release 16.0.0

d = self.factory.getUser(user)

def onError(err):
return 'Internal error in server'

d.addErrback(onError)

def writeResponse(message):
self.transport.write(message + '\r\n')
self.transport.loseConnection()

d.addCallback(writeResponse)

class FingerFactory(protocol.ServerFactory):
protocol = FingerProtocol

def __init__(self, prefix):
self.prefix=prefix

def getUser(self, user):
return client.getPage(self.prefix+user)

reactor.listenTCP(1079, FingerFactory(prefix='http://livejournal.com/~'))
reactor.run()

Use Application

Up until now, we faked. We kept using port 1079, because really, who wants to run a finger server with root privileges?
Well, the common solution is “privilege shedding” : after binding to the network, become a different, less privileged
user. We could have done it ourselves, but Twisted has a built-in way to do it. We will create a snippet as above, but
now we will define an application object. That object will have uid and gid attributes. When running it (later we
will see how) it will bind to ports, shed privileges and then run.

Read on to find out how to run this code using the twistd utility.

twistd

This is how to run “Twisted Applications” — files which define an ‘application’. A daemon is expected to adhere to
certain behavioral standards so that standard tools can stop/start/query them. If a Twisted application is run via twistd,
the TWISTed Daemonizer, all this behavioral stuff will be handled for you. twistd does everything a daemon can be
expected to — shuts down stdin/stdout/stderr, disconnects from the terminal and can even change runtime directory, or
even the root filesystems. In short, it does everything so the Twisted application developer can concentrate on writing
his networking code.

root% twistd -ny finger11.tac # just like before
root% twistd -y finger11.tac # daemonize, keep pid in twistd.pid
root% twistd -y finger11.tac --pidfile=finger.pid
root% twistd -y finger11.tac --rundir=/
root% twistd -y finger11.tac --chroot=/var
root% twistd -y finger11.tac -l /var/log/finger.log
root% twistd -y finger11.tac --syslog # just log to syslog
root% twistd -y finger11.tac --syslog --prefix=twistedfinger # use given prefix

There are several ways to tell twistd where your application is; here we show how it is done using the application
global variable in a Python source file (a Twisted Application Configuration file).

finger11.tac

2.1. Developer Guides 47

Twisted Documentation, Release 16.0.0

Read username, output from non-empty factory, drop connections
Use deferreds, to minimize synchronicity assumptions
Write application. Save in 'finger.tpy'

from twisted.application import internet, service
from twisted.internet import protocol, reactor, defer
from twisted.protocols import basic

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):

d = self.factory.getUser(user)

def onError(err):
return 'Internal error in server'

d.addErrback(onError)

def writeResponse(message):
self.transport.write(message + '\r\n')
self.transport.loseConnection()

d.addCallback(writeResponse)

class FingerFactory(protocol.ServerFactory):
protocol = FingerProtocol

def __init__(self, **kwargs):
self.users = kwargs

def getUser(self, user):
return defer.succeed(self.users.get(user, "No such user"))

application = service.Application('finger', uid=1, gid=1)
factory = FingerFactory(moshez='Happy and well')
internet.TCPServer(79, factory).setServiceParent(

service.IServiceCollection(application))

Instead of using reactor.listenTCP as in the above examples, here we are using its application-aware counter-
part, internet.TCPServer . Notice that when it is instantiated, the application object itself does not reference
either the protocol or the factory. Any services (such as TCPServer) which have the application as their parent will
be started when the application is started by twistd. The application object is more useful for returning an object that
supports the IService , IServiceCollection , IProcess , and sob.IPersistable interfaces with the given parameters; we’ll
be seeing these in the next part of the tutorial. As the parent of the TCPServer we opened, the application lets us
manage the TCPServer.

With the daemon running on the standard finger port, you can test it with the standard finger command: finger
moshez .

The Evolution of Finger: adding features to the finger service

Introduction

This is the second part of the Twisted tutorial Twisted from Scratch, or The Evolution of Finger .

In this section of the tutorial, our finger server will continue to sprout features: the ability for users to set finger
announces, and using our finger service to send those announcements on the web, on IRC and over XML-RPC.
Resources and XML-RPC are introduced in the Web Applications portion of the Twisted Web howto . More examples
using twisted.words.protocols.irc can be found in Writing a TCP Client and the Twisted Words examples .

48 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.application.service.IService.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.application.service.IServiceCollection.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.application.service.IProcess.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.persisted.sob.IPersistable.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.words.protocols.irc.html

Twisted Documentation, Release 16.0.0

Setting Message By Local Users

Now that port 1079 is free, maybe we can use it with a different server, one which will let people set their messages.
It does no access control, so anyone who can login to the machine can set any message. We assume this is the desired
behavior in our case. Testing it can be done by simply:

% nc localhost 1079 # or telnet localhost 1079
moshez
Giving a tutorial now, sorry!
^D

finger12.tac

But let's try and fix setting away messages, shall we?
from twisted.application import internet, service
from twisted.internet import protocol, reactor, defer
from twisted.protocols import basic

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):

d = self.factory.getUser(user)

def onError(err):
return 'Internal error in server'

d.addErrback(onError)

def writeResponse(message):
self.transport.write(message + '\r\n')
self.transport.loseConnection()

d.addCallback(writeResponse)

class FingerFactory(protocol.ServerFactory):
protocol = FingerProtocol

def __init__(self, **kwargs):
self.users = kwargs

def getUser(self, user):
return defer.succeed(self.users.get(user, "No such user"))

class FingerSetterProtocol(basic.LineReceiver):
def connectionMade(self):

self.lines = []

def lineReceived(self, line):
self.lines.append(line)

def connectionLost(self, reason):
user = self.lines[0]
status = self.lines[1]
self.factory.setUser(user, status)

class FingerSetterFactory(protocol.ServerFactory):
protocol = FingerSetterProtocol

def __init__(self, fingerFactory):
self.fingerFactory = fingerFactory

def setUser(self, user, status):

2.1. Developer Guides 49

Twisted Documentation, Release 16.0.0

self.fingerFactory.users[user] = status

ff = FingerFactory(moshez='Happy and well')
fsf = FingerSetterFactory(ff)

application = service.Application('finger', uid=1, gid=1)
serviceCollection = service.IServiceCollection(application)
internet.TCPServer(79,ff).setServiceParent(serviceCollection)
internet.TCPServer(1079,fsf).setServiceParent(serviceCollection)

This program has two protocol-factory-TCPServer pairs, which are both child services of the application. Specifically,
the setServiceParent method is used to define the two TCPServer services as children of application , which
implements IServiceCollection . Both services are thus started with the application.

Use Services to Make Dependencies Sane

The previous version had the setter poke at the innards of the finger factory. This strategy is usually not a good idea:
this version makes both factories symmetric by making them both look at a single object. Services are useful for when
an object is needed which is not related to a specific network server. Here, we define a common service class with
methods that will create factories on the fly. The service also contains methods the factories will depend on.

The factory-creation methods, getFingerFactory and getFingerSetterFactory , follow this pattern:

1. Instantiate a generic server factory, twisted.internet.protocol.ServerFactory .

2. Set the protocol class, just like our factory class would have.

3. Copy a service method to the factory as a function attribute. The function won’t have access to the factory’s
self , but that’s OK because as a bound method it has access to the service’s self , which is what it needs.
For getUser , a custom method defined in the service gets copied. For setUser , a standard method of the
users dictionary is copied.

Thus, we stopped subclassing: the service simply puts useful methods and attributes inside the factories. We are
getting better at protocol design: none of our protocol classes had to be changed, and neither will have to change until
the end of the tutorial.

As an application service, this new finger service implements the IService interface and can be started and stopped in
a standardized manner. We’ll make use of this in the next example.

finger13.tac

Fix asymmetry
from twisted.application import internet, service
from twisted.internet import protocol, reactor, defer
from twisted.protocols import basic

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):

d = self.factory.getUser(user)

def onError(err):
return 'Internal error in server'

d.addErrback(onError)

def writeResponse(message):
self.transport.write(message + '\r\n')
self.transport.loseConnection()

d.addCallback(writeResponse)

50 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.application.service.Service.setServiceParent.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.application.service.IServiceCollection.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.application.service.IService.html

Twisted Documentation, Release 16.0.0

class FingerSetterProtocol(basic.LineReceiver):
def connectionMade(self):

self.lines = []

def lineReceived(self, line):
self.lines.append(line)

def connectionLost(self,reason):
user = self.lines[0]
status = self.lines[1]
self.factory.setUser(user, status)

class FingerService(service.Service):
def __init__(self, **kwargs):

self.users = kwargs

def getUser(self, user):
return defer.succeed(self.users.get(user, "No such user"))

def setUser(self, user, status):
self.users[user] = status

def getFingerFactory(self):
f = protocol.ServerFactory()
f.protocol = FingerProtocol
f.getUser = self.getUser
return f

def getFingerSetterFactory(self):
f = protocol.ServerFactory()
f.protocol = FingerSetterProtocol
f.setUser = self.setUser
return f

application = service.Application('finger', uid=1, gid=1)
f = FingerService(moshez='Happy and well')
serviceCollection = service.IServiceCollection(application)
internet.TCPServer(79,f.getFingerFactory()

).setServiceParent(serviceCollection)
internet.TCPServer(1079,f.getFingerSetterFactory()

).setServiceParent(serviceCollection)

Most application services will want to use the Service base class, which implements all the generic IService
behavior.

Read Status File

This version shows how, instead of just letting users set their messages, we can read those from a centrally managed
file. We cache results, and every 30 seconds we refresh it. Services are useful for such scheduled tasks.

listings/finger/etc.users

finger14.tac

Read from file
from twisted.application import internet, service
from twisted.internet import protocol, reactor, defer
from twisted.protocols import basic

2.1. Developer Guides 51

https://twistedmatrix.com/documents/16.0.0/api/twisted.application.service.Service.html

Twisted Documentation, Release 16.0.0

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):

d = self.factory.getUser(user)

def onError(err):
return 'Internal error in server'

d.addErrback(onError)

def writeResponse(message):
self.transport.write(message + '\r\n')
self.transport.loseConnection()

d.addCallback(writeResponse)

class FingerService(service.Service):
def __init__(self, filename):

self.users = {}
self.filename = filename

def _read(self):
for line in file(self.filename):

user, status = line.split(':', 1)
user = user.strip()
status = status.strip()
self.users[user] = status

self.call = reactor.callLater(30, self._read)

def startService(self):
self._read()
service.Service.startService(self)

def stopService(self):
service.Service.stopService(self)
self.call.cancel()

def getUser(self, user):
return defer.succeed(self.users.get(user, "No such user"))

def getFingerFactory(self):
f = protocol.ServerFactory()
f.protocol = FingerProtocol
f.getUser = self.getUser
return f

application = service.Application('finger', uid=1, gid=1)
f = FingerService('/etc/users')
finger = internet.TCPServer(79, f.getFingerFactory())

finger.setServiceParent(service.IServiceCollection(application))
f.setServiceParent(service.IServiceCollection(application))

Since this version is reading data from a file (and refreshing the data every 30 seconds), there is no
FingerSetterFactory and thus nothing listening on port 1079.

Here we override the standard startService and stopService hooks in the Finger service, which is set up as a child
service of the application in the last line of the code. startService calls _read , the function responsible for
reading the data; reactor.callLater is then used to schedule it to run again after thirty seconds every time it is

52 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.application.service.Service.startService.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.application.service.Service.stopService.html

Twisted Documentation, Release 16.0.0

called. reactor.callLater returns an object that lets us cancel the scheduled run in stopService using its
cancel method.

Announce on Web, Too

The same kind of service can also produce things useful for other protocols. For example, in twisted.web, the factory
itself (Site) is almost never subclassed — instead, it is given a resource, which represents the tree of resources
available via URLs. That hierarchy is navigated by Site and overriding it dynamically is possible with getChild .

To integrate this into the Finger application (just because we can), we set up a new TCPServer that calls the Site
factory and retrieves resources via a new function of FingerService named getResource . This function
specifically returns a Resource object with an overridden getChild method.

finger15.tac

Read from file, announce on the web!
from twisted.application import internet, service
from twisted.internet import protocol, reactor, defer
from twisted.protocols import basic
from twisted.web import resource, server, static
import cgi

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):

d = self.factory.getUser(user)

def onError(err):
return 'Internal error in server'

d.addErrback(onError)

def writeResponse(message):
self.transport.write(message + '\r\n')
self.transport.loseConnection()

d.addCallback(writeResponse)

class FingerResource(resource.Resource):

def __init__(self, users):
self.users = users
resource.Resource.__init__(self)

we treat the path as the username
def getChild(self, username, request):

"""
'username' is a string.
'request' is a 'twisted.web.server.Request'.
"""
messagevalue = self.users.get(username)
username = cgi.escape(username)
if messagevalue is not None:

messagevalue = cgi.escape(messagevalue)
text = '<h1>%s</h1><p>%s</p>' % (username,messagevalue)

else:
text = '<h1>%s</h1><p>No such user</p>' % username

return static.Data(text, 'text/html')

2.1. Developer Guides 53

Twisted Documentation, Release 16.0.0

class FingerService(service.Service):
def __init__(self, filename):

self.filename = filename
self.users = {}

def _read(self):
self.users.clear()
for line in file(self.filename):

user, status = line.split(':', 1)
user = user.strip()
status = status.strip()
self.users[user] = status

self.call = reactor.callLater(30, self._read)

def getUser(self, user):
return defer.succeed(self.users.get(user, "No such user"))

def getFingerFactory(self):
f = protocol.ServerFactory()
f.protocol = FingerProtocol
f.getUser = self.getUser
return f

def getResource(self):
r = FingerResource(self.users)
return r

def startService(self):
self._read()
service.Service.startService(self)

def stopService(self):
service.Service.stopService(self)
self.call.cancel()

application = service.Application('finger', uid=1, gid=1)
f = FingerService('/etc/users')
serviceCollection = service.IServiceCollection(application)
f.setServiceParent(serviceCollection)
internet.TCPServer(79, f.getFingerFactory()

).setServiceParent(serviceCollection)
internet.TCPServer(8000, server.Site(f.getResource())

).setServiceParent(serviceCollection)

Announce on IRC, Too

This is the first time there is client code. IRC clients often act a lot like servers: responding to events from the
network. The reconnecting client factory will make sure that severed links will get re-established, with intelligent
tweaked exponential back-off algorithms. The IRC client itself is simple: the only real hack is getting the nickname
from the factory in connectionMade .

finger16.tac

Read from file, announce on the web, irc
from twisted.application import internet, service
from twisted.internet import protocol, reactor, defer

54 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

from twisted.words.protocols import irc
from twisted.protocols import basic
from twisted.web import resource, server, static

import cgi

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):

d = self.factory.getUser(user)

def onError(err):
return 'Internal error in server'

d.addErrback(onError)

def writeResponse(message):
self.transport.write(message + '\r\n')
self.transport.loseConnection()

d.addCallback(writeResponse)

class IRCReplyBot(irc.IRCClient):
def connectionMade(self):

self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split('!')[0]
if self.nickname.lower() == channel.lower():

d = self.factory.getUser(msg)

def onError(err):
return 'Internal error in server'

d.addErrback(onError)

def writeResponse(message):
irc.IRCClient.msg(self, user, msg+': '+message)

d.addCallback(writeResponse)

class FingerService(service.Service):
def __init__(self, filename):

self.filename = filename
self.users = {}

def _read(self):
self.users.clear()
for line in file(self.filename):

user, status = line.split(':', 1)
user = user.strip()
status = status.strip()
self.users[user] = status

self.call = reactor.callLater(30, self._read)

def getUser(self, user):
return defer.succeed(self.users.get(user, "No such user"))

def getFingerFactory(self):
f = protocol.ServerFactory()

2.1. Developer Guides 55

Twisted Documentation, Release 16.0.0

f.protocol = FingerProtocol
f.getUser = self.getUser
return f

def getResource(self):
r = resource.Resource()
r.getChild = (lambda path, request:

static.Data('<h1>%s</h1><p>%s</p>' %
tuple(map(cgi.escape,
[path,self.users.get(path,
"No such user <p/> usage: site/user")])),
'text/html'))

return r

def getIRCBot(self, nickname):
f = protocol.ReconnectingClientFactory()
f.protocol = IRCReplyBot
f.nickname = nickname
f.getUser = self.getUser
return f

def startService(self):
self._read()
service.Service.startService(self)

def stopService(self):
service.Service.stopService(self)
self.call.cancel()

application = service.Application('finger', uid=1, gid=1)
f = FingerService('/etc/users')
serviceCollection = service.IServiceCollection(application)
f.setServiceParent(serviceCollection)
internet.TCPServer(79, f.getFingerFactory()

).setServiceParent(serviceCollection)
internet.TCPServer(8000, server.Site(f.getResource())

).setServiceParent(serviceCollection)
internet.TCPClient('irc.freenode.org', 6667, f.getIRCBot('fingerbot')

).setServiceParent(serviceCollection)

FingerService now has another new function, getIRCbot , which returns the
ReconnectingClientFactory . This factory in turn will instantiate the IRCReplyBot protocol. The
IRCBot is configured in the last line to connect to irc.freenode.org with a nickname of fingerbot .

By overriding irc.IRCClient.connectionMade , IRCReplyBot can access the nickname attribute of the
factory that instantiated it.

Add XML-RPC Support

In Twisted, XML-RPC support is handled just as though it was another resource. That resource will still support GET
calls normally through render(), but that is usually left unimplemented. Note that it is possible to return deferreds from
XML-RPC methods. The client, of course, will not get the answer until the deferred is triggered.

finger17.tac

56 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

Read from file, announce on the web, irc, xml-rpc
from twisted.application import internet, service
from twisted.internet import protocol, reactor, defer
from twisted.words.protocols import irc
from twisted.protocols import basic
from twisted.web import resource, server, static, xmlrpc
import cgi

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):

d = self.factory.getUser(user)

def onError(err):
return 'Internal error in server'

d.addErrback(onError)

def writeResponse(message):
self.transport.write(message + '\r\n')
self.transport.loseConnection()

d.addCallback(writeResponse)

class IRCReplyBot(irc.IRCClient):
def connectionMade(self):

self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split('!')[0]
if self.nickname.lower() == channel.lower():

d = self.factory.getUser(msg)

def onError(err):
return 'Internal error in server'

d.addErrback(onError)

def writeResponse(message):
irc.IRCClient.msg(self, user, msg+': '+message)

d.addCallback(writeResponse)

class FingerService(service.Service):
def __init__(self, filename):

self.filename = filename
self.users = {}

def _read(self):
self.users.clear()
for line in file(self.filename):

user, status = line.split(':', 1)
user = user.strip()
status = status.strip()
self.users[user] = status

self.call = reactor.callLater(30, self._read)

def getUser(self, user):
return defer.succeed(self.users.get(user, "No such user"))

2.1. Developer Guides 57

Twisted Documentation, Release 16.0.0

def getFingerFactory(self):
f = protocol.ServerFactory()
f.protocol = FingerProtocol
f.getUser = self.getUser
return f

def getResource(self):
r = resource.Resource()
r.getChild = (lambda path, request:

static.Data('<h1>%s</h1><p>%s</p>' %
tuple(map(cgi.escape,
[path,self.users.get(path, "No such user")])),
'text/html'))

x = xmlrpc.XMLRPC()
x.xmlrpc_getUser = self.getUser
r.putChild('RPC2', x)
return r

def getIRCBot(self, nickname):
f = protocol.ReconnectingClientFactory()
f.protocol = IRCReplyBot
f.nickname = nickname
f.getUser = self.getUser
return f

def startService(self):
self._read()
service.Service.startService(self)

def stopService(self):
service.Service.stopService(self)
self.call.cancel()

application = service.Application('finger', uid=1, gid=1)
f = FingerService('/etc/users')
serviceCollection = service.IServiceCollection(application)
f.setServiceParent(serviceCollection)
internet.TCPServer(79, f.getFingerFactory()

).setServiceParent(serviceCollection)
internet.TCPServer(8000, server.Site(f.getResource())

).setServiceParent(serviceCollection)
internet.TCPClient('irc.freenode.org', 6667, f.getIRCBot('fingerbot')

).setServiceParent(serviceCollection)

Instead of a web browser, we can test the XMLRPC finger using a simple client based on Python’s built-in
xmlrpclib , which will access the resource we’ve made available at localhost/RPC2 .

fingerXRclient.py

testing xmlrpc finger

import xmlrpclib
server = xmlrpclib.Server('http://127.0.0.1:8000/RPC2')
print server.getUser('moshez')

58 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

The Evolution of Finger: cleaning up the finger code

Introduction

This is the third part of the Twisted tutorial Twisted from Scratch, or The Evolution of Finger .

In this section of the tutorial, we’ll clean up our code so that it is closer to a readable and extensible style.

Write Readable Code

The last version of the application had a lot of hacks. We avoided sub-classing, didn’t support things like user listings
over the web, and removed all blank lines – all in the interest of code which is shorter. Here we take a step back,
subclass what is more naturally a subclass, make things which should take multiple lines take them, etc. This shows a
much better style of developing Twisted applications, though the hacks in the previous stages are sometimes used in
throw-away prototypes.

finger18.tac

Do everything properly
from twisted.application import internet, service
from twisted.internet import protocol, reactor, defer
from twisted.words.protocols import irc
from twisted.protocols import basic
from twisted.web import resource, server, static, xmlrpc
import cgi

def catchError(err):
return "Internal error in server"

class FingerProtocol(basic.LineReceiver):

def lineReceived(self, user):
d = self.factory.getUser(user)
d.addErrback(catchError)
def writeValue(value):

self.transport.write(value+'\r\n')
self.transport.loseConnection()

d.addCallback(writeValue)

class IRCReplyBot(irc.IRCClient):

def connectionMade(self):
self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split('!')[0]
if self.nickname.lower() == channel.lower():

d = self.factory.getUser(msg)
d.addErrback(catchError)
d.addCallback(lambda m: "Status of %s: %s" % (msg, m))
d.addCallback(lambda m: self.msg(user, m))

class UserStatusTree(resource.Resource):

2.1. Developer Guides 59

Twisted Documentation, Release 16.0.0

def __init__(self, service):
resource.Resource.__init__(self)
self.service = service

def render_GET(self, request):
d = self.service.getUsers()
def formatUsers(users):

l = ['%s' % (user, user)
for user in users]

return ''+''.join(l)+''
d.addCallback(formatUsers)
d.addCallback(request.write)
d.addCallback(lambda _: request.finish())
return server.NOT_DONE_YET

def getChild(self, path, request):
if path=="":

return UserStatusTree(self.service)
else:

return UserStatus(path, self.service)

class UserStatus(resource.Resource):

def __init__(self, user, service):
resource.Resource.__init__(self)
self.user = user
self.service = service

def render_GET(self, request):
d = self.service.getUser(self.user)
d.addCallback(cgi.escape)
d.addCallback(lambda m:

'<h1>%s</h1>'%self.user+'<p>%s</p>'%m)
d.addCallback(request.write)
d.addCallback(lambda _: request.finish())
return server.NOT_DONE_YET

class UserStatusXR(xmlrpc.XMLRPC):

def __init__(self, service):
xmlrpc.XMLRPC.__init__(self)
self.service = service

def xmlrpc_getUser(self, user):
return self.service.getUser(user)

class FingerService(service.Service):

def __init__(self, filename):
self.filename = filename
self.users = {}

def _read(self):
self.users.clear()
for line in file(self.filename):

60 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

user, status = line.split(':', 1)
user = user.strip()
status = status.strip()
self.users[user] = status

self.call = reactor.callLater(30, self._read)

def getUser(self, user):
return defer.succeed(self.users.get(user, "No such user"))

def getUsers(self):
return defer.succeed(self.users.keys())

def getFingerFactory(self):
f = protocol.ServerFactory()
f.protocol = FingerProtocol
f.getUser = self.getUser
return f

def getResource(self):
r = UserStatusTree(self)
x = UserStatusXR(self)
r.putChild('RPC2', x)
return r

def getIRCBot(self, nickname):
f = protocol.ReconnectingClientFactory()
f.protocol = IRCReplyBot
f.nickname = nickname
f.getUser = self.getUser
return f

def startService(self):
self._read()
service.Service.startService(self)

def stopService(self):
service.Service.stopService(self)
self.call.cancel()

application = service.Application('finger', uid=1, gid=1)
f = FingerService('/etc/users')
serviceCollection = service.IServiceCollection(application)
f.setServiceParent(serviceCollection)
internet.TCPServer(79, f.getFingerFactory()

).setServiceParent(serviceCollection)
internet.TCPServer(8000, server.Site(f.getResource())

).setServiceParent(serviceCollection)
internet.TCPClient('irc.freenode.org', 6667, f.getIRCBot('fingerbot')

).setServiceParent(serviceCollection)

The Evolution of Finger: moving to a component based architecture

Introduction

This is the fourth part of the Twisted tutorial Twisted from Scratch, or The Evolution of Finger .

2.1. Developer Guides 61

Twisted Documentation, Release 16.0.0

In this section of the tutorial, we’ll move our code to a component architecture so that adding new features is trivial.
See Interfaces and Adapters for a more complete discussion of components.

Write Maintainable Code

In the last version, the service class was three times longer than any other class, and was hard to understand. This was
because it turned out to have multiple responsibilities. It had to know how to access user information, by rereading
the file every half minute, but also how to display itself in a myriad of protocols. Here, we used the component-based
architecture that Twisted provides to achieve a separation of concerns. All the service is responsible for, now, is
supporting getUser /getUsers . It declares its support via a call to zope.interface.implements . Then,
adapters are used to make this service look like an appropriate class for various things: for supplying a finger factory to
TCPServer , for supplying a resource to site’s constructor, and to provide an IRC client factory for TCPClient . All
the adapters use are the methods in FingerService they are declared to use:getUser /getUsers . We could,
of course, skip the interfaces and let the configuration code use things like FingerFactoryFromService(f)
directly. However, using interfaces provides the same flexibility inheritance gives: future subclasses can override the
adapters.

finger19.tac

Do everything properly, and componentize
from twisted.application import internet, service
from twisted.internet import protocol, reactor, defer
from twisted.words.protocols import irc
from twisted.protocols import basic
from twisted.python import components
from twisted.web import resource, server, static, xmlrpc
from zope.interface import Interface, implements
import cgi

class IFingerService(Interface):

def getUser(user):
"""
Return a deferred returning a string.
"""

def getUsers():
"""
Return a deferred returning a list of strings.
"""

class IFingerSetterService(Interface):

def setUser(user, status):
"""
Set the user's status to something.
"""

def catchError(err):
return "Internal error in server"

class FingerProtocol(basic.LineReceiver):

def lineReceived(self, user):

62 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

d = self.factory.getUser(user)
d.addErrback(catchError)
def writeValue(value):

self.transport.write(value+'\r\n')
self.transport.loseConnection()

d.addCallback(writeValue)

class IFingerFactory(Interface):

def getUser(user):
"""
Return a deferred returning a string.
"""

def buildProtocol(addr):
"""
Return a protocol returning a string.
"""

class FingerFactoryFromService(protocol.ServerFactory):

implements(IFingerFactory)

protocol = FingerProtocol

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(FingerFactoryFromService,
IFingerService,
IFingerFactory)

class FingerSetterProtocol(basic.LineReceiver):

def connectionMade(self):
self.lines = []

def lineReceived(self, line):
self.lines.append(line)

def connectionLost(self, reason):
if len(self.lines) == 2:

self.factory.setUser(*self.lines)

class IFingerSetterFactory(Interface):

def setUser(user, status):
"""
Return a deferred returning a string.
"""

2.1. Developer Guides 63

Twisted Documentation, Release 16.0.0

def buildProtocol(addr):
"""
Return a protocol returning a string.
"""

class FingerSetterFactoryFromService(protocol.ServerFactory):

implements(IFingerSetterFactory)

protocol = FingerSetterProtocol

def __init__(self, service):
self.service = service

def setUser(self, user, status):
self.service.setUser(user, status)

components.registerAdapter(FingerSetterFactoryFromService,
IFingerSetterService,
IFingerSetterFactory)

class IRCReplyBot(irc.IRCClient):

def connectionMade(self):
self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split('!')[0]
if self.nickname.lower() == channel.lower():

d = self.factory.getUser(msg)
d.addErrback(catchError)
d.addCallback(lambda m: "Status of %s: %s" % (msg, m))
d.addCallback(lambda m: self.msg(user, m))

class IIRCClientFactory(Interface):
"""
@ivar nickname
"""

def getUser(user):
"""
Return a deferred returning a string.
"""

def buildProtocol(addr):
"""
Return a protocol.
"""

class IRCClientFactoryFromService(protocol.ClientFactory):

implements(IIRCClientFactory)

64 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

protocol = IRCReplyBot
nickname = None

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(IRCClientFactoryFromService,
IFingerService,
IIRCClientFactory)

class UserStatusTree(resource.Resource):

implements(resource.IResource)

def __init__(self, service):
resource.Resource.__init__(self)
self.service = service
self.putChild('RPC2', UserStatusXR(self.service))

def render_GET(self, request):
d = self.service.getUsers()
def formatUsers(users):

l = ['%s' % (user, user)
for user in users]

return ''+''.join(l)+''
d.addCallback(formatUsers)
d.addCallback(request.write)
d.addCallback(lambda _: request.finish())
return server.NOT_DONE_YET

def getChild(self, path, request):
if path=="":

return UserStatusTree(self.service)
else:

return UserStatus(path, self.service)

components.registerAdapter(UserStatusTree, IFingerService,
resource.IResource)

class UserStatus(resource.Resource):

def __init__(self, user, service):
resource.Resource.__init__(self)
self.user = user
self.service = service

def render_GET(self, request):
d = self.service.getUser(self.user)
d.addCallback(cgi.escape)
d.addCallback(lambda m:

'<h1>%s</h1>'%self.user+'<p>%s</p>'%m)
d.addCallback(request.write)
d.addCallback(lambda _: request.finish())

2.1. Developer Guides 65

Twisted Documentation, Release 16.0.0

return server.NOT_DONE_YET

class UserStatusXR(xmlrpc.XMLRPC):

def __init__(self, service):
xmlrpc.XMLRPC.__init__(self)
self.service = service

def xmlrpc_getUser(self, user):
return self.service.getUser(user)

class FingerService(service.Service):

implements(IFingerService)

def __init__(self, filename):
self.filename = filename
self.users = {}

def _read(self):
self.users.clear()
for line in file(self.filename):

user, status = line.split(':', 1)
user = user.strip()
status = status.strip()
self.users[user] = status

self.call = reactor.callLater(30, self._read)

def getUser(self, user):
return defer.succeed(self.users.get(user, "No such user"))

def getUsers(self):
return defer.succeed(self.users.keys())

def startService(self):
self._read()
service.Service.startService(self)

def stopService(self):
service.Service.stopService(self)
self.call.cancel()

application = service.Application('finger', uid=1, gid=1)
f = FingerService('/etc/users')
serviceCollection = service.IServiceCollection(application)
f.setServiceParent(serviceCollection)
internet.TCPServer(79, IFingerFactory(f)

).setServiceParent(serviceCollection)
internet.TCPServer(8000, server.Site(resource.IResource(f))

).setServiceParent(serviceCollection)
i = IIRCClientFactory(f)
i.nickname = 'fingerbot'
internet.TCPClient('irc.freenode.org', 6667, i

).setServiceParent(serviceCollection)

66 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

Advantages of Latest Version

• Readable – each class is short

• Maintainable – each class knows only about interfaces

• Dependencies between code parts are minimized

• Example: writing a new IFingerService is easy

finger19a_changes.py

class IFingerSetterService(Interface):

def setUser(user, status):
"""Set the user's status to something"""

Advantages of latest version

class MemoryFingerService(service.Service):

implements([IFingerService, IFingerSetterService])

def __init__(self, **kwargs):
self.users = kwargs

def getUser(self, user):
return defer.succeed(self.users.get(user, "No such user"))

def getUsers(self):
return defer.succeed(self.users.keys())

def setUser(self, user, status):
self.users[user] = status

f = MemoryFingerService(moshez='Happy and well')
serviceCollection = service.IServiceCollection(application)
internet.TCPServer(1079, IFingerSetterFactory(f), interface='127.0.0.1'

).setServiceParent(serviceCollection)

Full source code here:

finger19a.tac

Do everything properly, and componentize
from twisted.application import internet, service
from twisted.internet import protocol, reactor, defer
from twisted.words.protocols import irc
from twisted.protocols import basic
from twisted.python import components
from twisted.web import resource, server, static, xmlrpc
from zope.interface import Interface, implements
import cgi

class IFingerService(Interface):

def getUser(user):
"""Return a deferred returning a string"""

2.1. Developer Guides 67

Twisted Documentation, Release 16.0.0

def getUsers():
"""Return a deferred returning a list of strings"""

class IFingerSetterService(Interface):

def setUser(user, status):
"""Set the user's status to something"""

def catchError(err):
return "Internal error in server"

class FingerProtocol(basic.LineReceiver):

def lineReceived(self, user):
d = self.factory.getUser(user)
d.addErrback(catchError)
def writeValue(value):

self.transport.write(value+'\r\n')
self.transport.loseConnection()

d.addCallback(writeValue)

class IFingerFactory(Interface):

def getUser(user):
"""Return a deferred returning a string"""

def buildProtocol(addr):
"""Return a protocol returning a string"""

class FingerFactoryFromService(protocol.ServerFactory):

implements(IFingerFactory)

protocol = FingerProtocol

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(FingerFactoryFromService,
IFingerService,
IFingerFactory)

class FingerSetterProtocol(basic.LineReceiver):

def connectionMade(self):
self.lines = []

def lineReceived(self, line):
self.lines.append(line)

def connectionLost(self, reason):
if len(self.lines) == 2:

self.factory.setUser(*self.lines)

68 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

class IFingerSetterFactory(Interface):

def setUser(user, status):
"""Return a deferred returning a string"""

def buildProtocol(addr):
"""Return a protocol returning a string"""

class FingerSetterFactoryFromService(protocol.ServerFactory):

implements(IFingerSetterFactory)

protocol = FingerSetterProtocol

def __init__(self, service):
self.service = service

def setUser(self, user, status):
self.service.setUser(user, status)

components.registerAdapter(FingerSetterFactoryFromService,
IFingerSetterService,
IFingerSetterFactory)

class IRCReplyBot(irc.IRCClient):

def connectionMade(self):
self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split('!')[0]
if self.nickname.lower() == channel.lower():

d = self.factory.getUser(msg)
d.addErrback(catchError)
d.addCallback(lambda m: "Status of %s: %s" % (msg, m))
d.addCallback(lambda m: self.msg(user, m))

class IIRCClientFactory(Interface):

"""
@ivar nickname
"""

def getUser(user):
"""Return a deferred returning a string"""

def buildProtocol(addr):
"""Return a protocol"""

class IRCClientFactoryFromService(protocol.ClientFactory):

implements(IIRCClientFactory)

2.1. Developer Guides 69

Twisted Documentation, Release 16.0.0

protocol = IRCReplyBot
nickname = None

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(IRCClientFactoryFromService,
IFingerService,
IIRCClientFactory)

class UserStatusTree(resource.Resource):

implements(resource.IResource)

def __init__(self, service):
resource.Resource.__init__(self)
self.service = service
self.putChild('RPC2', UserStatusXR(self.service))

def render_GET(self, request):
d = self.service.getUsers()
def formatUsers(users):

l = ['%s' % (user, user)
for user in users]

return ''+''.join(l)+''
d.addCallback(formatUsers)
d.addCallback(request.write)
d.addCallback(lambda _: request.finish())
return server.NOT_DONE_YET

def getChild(self, path, request):
if path=="":

return UserStatusTree(self.service)
else:

return UserStatus(path, self.service)

components.registerAdapter(UserStatusTree, IFingerService,
resource.IResource)

class UserStatus(resource.Resource):

def __init__(self, user, service):
resource.Resource.__init__(self)
self.user = user
self.service = service

def render_GET(self, request):
d = self.service.getUser(self.user)
d.addCallback(cgi.escape)
d.addCallback(lambda m:

'<h1>%s</h1>'%self.user+'<p>%s</p>'%m)
d.addCallback(request.write)
d.addCallback(lambda _: request.finish())
return server.NOT_DONE_YET

70 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

class UserStatusXR(xmlrpc.XMLRPC):

def __init__(self, service):
xmlrpc.XMLRPC.__init__(self)
self.service = service

def xmlrpc_getUser(self, user):
return self.service.getUser(user)

class MemoryFingerService(service.Service):

implements([IFingerService, IFingerSetterService])

def __init__(self, **kwargs):
self.users = kwargs

def getUser(self, user):
return defer.succeed(self.users.get(user, "No such user"))

def getUsers(self):
return defer.succeed(self.users.keys())

def setUser(self, user, status):
self.users[user] = status

application = service.Application('finger', uid=1, gid=1)
f = MemoryFingerService(moshez='Happy and well')
serviceCollection = service.IServiceCollection(application)
internet.TCPServer(79, IFingerFactory(f)

).setServiceParent(serviceCollection)
internet.TCPServer(8000, server.Site(resource.IResource(f))

).setServiceParent(serviceCollection)
i = IIRCClientFactory(f)
i.nickname = 'fingerbot'
internet.TCPClient('irc.freenode.org', 6667, i

).setServiceParent(serviceCollection)
internet.TCPServer(1079, IFingerSetterFactory(f), interface='127.0.0.1'

).setServiceParent(serviceCollection)

Aspect-Oriented Programming

At last, an example of aspect-oriented programming that isn’t about logging or timing. This code is actually useful!
Watch how aspect-oriented programming helps you write less code and have fewer dependencies!

The Evolution of Finger: pluggable backends

Introduction

This is the fifth part of the Twisted tutorial Twisted from Scratch, or The Evolution of Finger .

In this part we will add new several new backends to our finger service using the component-based architecture
developed in The Evolution of Finger: moving to a component based architecture . This will show just how convenient
it is to implement new back-ends when we move to a component based architecture. Note that here we also use an

2.1. Developer Guides 71

Twisted Documentation, Release 16.0.0

interface we previously wrote, FingerSetterFactory , by supporting one single method. We manage to preserve
the service’s ignorance of the network.

Another Back-end

finger19b_changes.py

from twisted.internet import protocol, reactor, defer, utils
import pwd

Another back-end

class LocalFingerService(service.Service):

implements(IFingerService)

def getUser(self, user):
need a local finger daemon running for this to work

return utils.getProcessOutput("finger", [user])

def getUsers(self):
return defer.succeed([])

f = LocalFingerService()

Full source code here:

finger19b.tac

Do everything properly, and componentize
from twisted.application import internet, service
from twisted.internet import protocol, reactor, defer, utils
from twisted.words.protocols import irc
from twisted.protocols import basic
from twisted.python import components
from twisted.web import resource, server, static, xmlrpc
from zope.interface import Interface, implements
import cgi
import pwd

class IFingerService(Interface):

def getUser(user):
"""
Return a deferred returning a string.
"""

def getUsers():
"""
Return a deferred returning a list of strings.
"""

class IFingerSetterService(Interface):

def setUser(user, status):
"""

72 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

Set the user's status to something.
"""

class IFingerSetterService(Interface):

def setUser(user, status):
"""
Set the user's status to something.
"""

def catchError(err):
return "Internal error in server"

class FingerProtocol(basic.LineReceiver):

def lineReceived(self, user):
d = self.factory.getUser(user)
d.addErrback(catchError)
def writeValue(value):

self.transport.write(value+'\r\n')
self.transport.loseConnection()

d.addCallback(writeValue)

class IFingerFactory(Interface):

def getUser(user):
"""
Return a deferred returning a string.
"""

def buildProtocol(addr):
"""
Return a protocol returning a string.
"""

class FingerFactoryFromService(protocol.ServerFactory):

implements(IFingerFactory)

protocol = FingerProtocol

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(FingerFactoryFromService,
IFingerService,
IFingerFactory)

class FingerSetterProtocol(basic.LineReceiver):

2.1. Developer Guides 73

Twisted Documentation, Release 16.0.0

def connectionMade(self):
self.lines = []

def lineReceived(self, line):
self.lines.append(line)

def connectionLost(self, reason):
if len(self.lines) == 2:

self.factory.setUser(*self.lines)

class IFingerSetterFactory(Interface):

def setUser(user, status):
"""
Return a deferred returning a string.
"""

def buildProtocol(addr):
"""
Return a protocol returning a string.
"""

class FingerSetterFactoryFromService(protocol.ServerFactory):

implements(IFingerSetterFactory)

protocol = FingerSetterProtocol

def __init__(self, service):
self.service = service

def setUser(self, user, status):
self.service.setUser(user, status)

components.registerAdapter(FingerSetterFactoryFromService,
IFingerSetterService,
IFingerSetterFactory)

class IRCReplyBot(irc.IRCClient):

def connectionMade(self):
self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split('!')[0]
if self.nickname.lower() == channel.lower():

d = self.factory.getUser(msg)
d.addErrback(catchError)
d.addCallback(lambda m: "Status of %s: %s" % (msg, m))
d.addCallback(lambda m: self.msg(user, m))

class IIRCClientFactory(Interface):

74 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

"""
@ivar nickname
"""

def getUser(user):
"""
Return a deferred returning a string.
"""

def buildProtocol(addr):
"""
Return a protocol.
"""

class IRCClientFactoryFromService(protocol.ClientFactory):

implements(IIRCClientFactory)

protocol = IRCReplyBot
nickname = None

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(IRCClientFactoryFromService,
IFingerService,
IIRCClientFactory)

class UserStatusTree(resource.Resource):

implements(resource.IResource)

def __init__(self, service):
resource.Resource.__init__(self)
self.service = service
self.putChild('RPC2', UserStatusXR(self.service))

def render_GET(self, request):
d = self.service.getUsers()
def formatUsers(users):

l = ['%s' % (user, user)
for user in users]

return ''+''.join(l)+''
d.addCallback(formatUsers)
d.addCallback(request.write)
d.addCallback(lambda _: request.finish())
return server.NOT_DONE_YET

def getChild(self, path, request):
if path=="":

return UserStatusTree(self.service)
else:

return UserStatus(path, self.service)

2.1. Developer Guides 75

Twisted Documentation, Release 16.0.0

components.registerAdapter(UserStatusTree, IFingerService,
resource.IResource)

class UserStatus(resource.Resource):

def __init__(self, user, service):
resource.Resource.__init__(self)
self.user = user
self.service = service

def render_GET(self, request):
d = self.service.getUser(self.user)
d.addCallback(cgi.escape)
d.addCallback(lambda m:

'<h1>%s</h1>'%self.user+'<p>%s</p>'%m)
d.addCallback(request.write)
d.addCallback(lambda _: request.finish())
return server.NOT_DONE_YET

class UserStatusXR(xmlrpc.XMLRPC):

def __init__(self, service):
xmlrpc.XMLRPC.__init__(self)
self.service = service

def xmlrpc_getUser(self, user):
return self.service.getUser(user)

class FingerService(service.Service):

implements(IFingerService)

def __init__(self, filename):
self.filename = filename
self.users = {}

def _read(self):
self.users.clear()
for line in file(self.filename):

user, status = line.split(':', 1)
user = user.strip()
status = status.strip()
self.users[user] = status

self.call = reactor.callLater(30, self._read)

def getUser(self, user):
return defer.succeed(self.users.get(user, "No such user"))

def getUsers(self):
return defer.succeed(self.users.keys())

def startService(self):
self._read()
service.Service.startService(self)

76 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

def stopService(self):
service.Service.stopService(self)
self.call.cancel()

Another back-end

class LocalFingerService(service.Service):

implements(IFingerService)

def getUser(self, user):
need a local finger daemon running for this to work

return utils.getProcessOutput("finger", [user])

def getUsers(self):
return defer.succeed([])

application = service.Application('finger', uid=1, gid=1)
f = LocalFingerService()
serviceCollection = service.IServiceCollection(application)
internet.TCPServer(79, IFingerFactory(f)

).setServiceParent(serviceCollection)
internet.TCPServer(8000, server.Site(resource.IResource(f))

).setServiceParent(serviceCollection)
i = IIRCClientFactory(f)
i.nickname = 'fingerbot'
internet.TCPClient('irc.freenode.org', 6667, i

).setServiceParent(serviceCollection)

We’ve already written this, but now we get more for less work: the network code is completely separate from the
back-end.

Yet Another Back-end: Doing the Standard Thing

finger19c_changes.py

from twisted.internet import protocol, reactor, defer, utils
import pwd
import os

Yet another back-end

class LocalFingerService(service.Service):

implements(IFingerService)

def getUser(self, user):
user = user.strip()
try:

entry = pwd.getpwnam(user)
except KeyError:

return defer.succeed("No such user")
try:

f = file(os.path.join(entry[5],'.plan'))

2.1. Developer Guides 77

Twisted Documentation, Release 16.0.0

except (IOError, OSError):
return defer.succeed("No such user")

data = f.read()
data = data.strip()
f.close()
return defer.succeed(data)

def getUsers(self):
return defer.succeed([])

f = LocalFingerService()

Full source code here:

finger19c.tac

Do everything properly, and componentize
from twisted.application import internet, service
from twisted.internet import protocol, reactor, defer, utils
from twisted.words.protocols import irc
from twisted.protocols import basic
from twisted.python import components
from twisted.web import resource, server, static, xmlrpc
from zope.interface import Interface, implements
import cgi
import pwd
import os

class IFingerService(Interface):

def getUser(user):
"""
Return a deferred returning a string.
"""

def getUsers():
"""
Return a deferred returning a list of strings.
"""

class IFingerSetterService(Interface):

def setUser(user, status):
"""
Set the user's status to something.
"""

class IFingerSetterService(Interface):

def setUser(user, status):
"""
Set the user's status to something.
"""

78 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

def catchError(err):
return "Internal error in server"

class FingerProtocol(basic.LineReceiver):

def lineReceived(self, user):
d = self.factory.getUser(user)
d.addErrback(catchError)
def writeValue(value):

self.transport.write(value+'\r\n')
self.transport.loseConnection()

d.addCallback(writeValue)

class IFingerFactory(Interface):

def getUser(user):
"""
Return a deferred returning a string.
"""

def buildProtocol(addr):
"""
Return a protocol returning a string.
"""

class FingerFactoryFromService(protocol.ServerFactory):

implements(IFingerFactory)

protocol = FingerProtocol

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(FingerFactoryFromService,
IFingerService,
IFingerFactory)

class FingerSetterProtocol(basic.LineReceiver):

def connectionMade(self):
self.lines = []

def lineReceived(self, line):
self.lines.append(line)

def connectionLost(self, reason):
if len(self.lines) == 2:

self.factory.setUser(*self.lines)

2.1. Developer Guides 79

Twisted Documentation, Release 16.0.0

class IFingerSetterFactory(Interface):

def setUser(user, status):
"""
Return a deferred returning a string.
"""

def buildProtocol(addr):
"""
Return a protocol returning a string.
"""

class FingerSetterFactoryFromService(protocol.ServerFactory):

implements(IFingerSetterFactory)

protocol = FingerSetterProtocol

def __init__(self, service):
self.service = service

def setUser(self, user, status):
self.service.setUser(user, status)

components.registerAdapter(FingerSetterFactoryFromService,
IFingerSetterService,
IFingerSetterFactory)

class IRCReplyBot(irc.IRCClient):

def connectionMade():
self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split('!')[0]
if self.nickname.lower() == channel.lower():

d = self.factory.getUser(msg)
d.addErrback(catchError)
d.addCallback(lambda m: "Status of %s: %s" % (msg, m))
d.addCallback(lambda m: self.msg(user, m))

class IIRCClientFactory(Interface):

"""
@ivar nickname
"""

def getUser(user):
"""
Return a deferred returning a string.
"""

def buildProtocol(addr):

80 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

"""
Return a protocol.
"""

class IRCClientFactoryFromService(protocol.ClientFactory):

implements(IIRCClientFactory)

protocol = IRCReplyBot
nickname = None

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(IRCClientFactoryFromService,
IFingerService,
IIRCClientFactory)

class UserStatusTree(resource.Resource):

implements(resource.IResource)

def __init__(self, service):
resource.Resource.__init__(self)
self.service = service
self.putChild('RPC2', UserStatusXR(self.service))

def render_GET(self, request):
d = self.service.getUsers()
def formatUsers(users):

l = ['%s' % (user, user)
for user in users]

return ''+''.join(l)+''
d.addCallback(formatUsers)
d.addCallback(request.write)
d.addCallback(lambda _: request.finish())
return server.NOT_DONE_YET

def getChild(self, path, request):
if path=="":

return UserStatusTree(self.service)
else:

return UserStatus(path, self.service)

components.registerAdapter(UserStatusTree, IFingerService,
resource.IResource)

class UserStatus(resource.Resource):

def __init__(self, user, service):
resource.Resource.__init__(self)
self.user = user

2.1. Developer Guides 81

Twisted Documentation, Release 16.0.0

self.service = service

def render_GET(self, request):
d = self.service.getUser(self.user)
d.addCallback(cgi.escape)
d.addCallback(lambda m:

'<h1>%s</h1>'%self.user+'<p>%s</p>'%m)
d.addCallback(request.write)
d.addCallback(lambda _: request.finish())
return server.NOT_DONE_YET

class UserStatusXR(xmlrpc.XMLRPC):

def __init__(self, service):
xmlrpc.XMLRPC.__init__(self)
self.service = service

def xmlrpc_getUser(self, user):
return self.service.getUser(user)

class FingerService(service.Service):

implements(IFingerService)

def __init__(self, filename):
self.filename = filename
self.users = {}

def _read(self):
self.users.clear()
for line in file(self.filename):

user, status = line.split(':', 1)
user = user.strip()
status = status.strip()
self.users[user] = status

self.call = reactor.callLater(30, self._read)

def getUser(self, user):
return defer.succeed(self.users.get(user, "No such user"))

def getUsers(self):
return defer.succeed(self.users.keys())

def startService(self):
self._read()
service.Service.startService(self)

def stopService(self):
service.Service.stopService(self)
self.call.cancel()

Yet another back-end

class LocalFingerService(service.Service):

82 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

implements(IFingerService)

def getUser(self, user):
user = user.strip()
try:

entry = pwd.getpwnam(user)
except KeyError:

return defer.succeed("No such user")
try:

f = file(os.path.join(entry[5],'.plan'))
except (IOError, OSError):

return defer.succeed("No such user")
data = f.read()
data = data.strip()
f.close()
return defer.succeed(data)

def getUsers(self):
return defer.succeed([])

application = service.Application('finger', uid=1, gid=1)
f = LocalFingerService()
serviceCollection = service.IServiceCollection(application)
internet.TCPServer(79, IFingerFactory(f)

).setServiceParent(serviceCollection)
internet.TCPServer(8000, server.Site(resource.IResource(f))

).setServiceParent(serviceCollection)
i = IIRCClientFactory(f)
i.nickname = 'fingerbot'
internet.TCPClient('irc.freenode.org', 6667, i

).setServiceParent(serviceCollection)

Not much to say except that now we can be churn out backends like crazy. Feel like doing a back-end for Advogato ,
for example? Dig out the XML-RPC client support Twisted has, and get to work!

The Evolution of Finger: a web frontend

Introduction

This is the sixth part of the Twisted tutorial Twisted from Scratch, or The Evolution of Finger .

In this part, we demonstrate adding a web frontend using simple twisted.web.resource.Resource objects:
UserStatusTree , which will produce a listing of all users at the base URL (/) of our site; UserStatus ,
which gives the status of each user at the location /username ; and UserStatusXR , which exposes an XMLRPC
interface to getUser and getUsers functions at the URL /RPC2 .

In this example we construct HTML segments manually. If the web interface was less trivial, we would want to use
more sophisticated web templating and design our system so that HTML rendering and logic were clearly separated.

finger20.tac

Do everything properly, and componentize
from twisted.application import internet, service
from twisted.internet import protocol, reactor, defer
from twisted.words.protocols import irc
from twisted.protocols import basic

2.1. Developer Guides 83

http://www.advogato.org/
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.resource.Resource.html

Twisted Documentation, Release 16.0.0

from twisted.python import components
from twisted.web import resource, server, static, xmlrpc
from zope.interface import Interface, implements
import cgi

class IFingerService(Interface):

def getUser(user):
"""
Return a deferred returning a string.
"""

def getUsers():
"""
Return a deferred returning a list of strings.
"""

class IFingerSetterService(Interface):

def setUser(user, status):
"""
Set the user's status to something.
"""

def catchError(err):
return "Internal error in server"

class FingerProtocol(basic.LineReceiver):

def lineReceived(self, user):
d = self.factory.getUser(user)
d.addErrback(catchError)
def writeValue(value):

self.transport.write(value+'\r\n')
self.transport.loseConnection()

d.addCallback(writeValue)

class IFingerFactory(Interface):

def getUser(user):
"""
Return a deferred returning a string.
"""

def buildProtocol(addr):
"""
Return a protocol returning a string.
"""

class FingerFactoryFromService(protocol.ServerFactory):

implements(IFingerFactory)

84 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

protocol = FingerProtocol

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(FingerFactoryFromService,
IFingerService,
IFingerFactory)

class FingerSetterProtocol(basic.LineReceiver):

def connectionMade(self):
self.lines = []

def lineReceived(self, line):
self.lines.append(line)

def connectionLost(self, reason):
if len(self.lines) == 2:

self.factory.setUser(*self.lines)

class IFingerSetterFactory(Interface):

def setUser(user, status):
"""
Return a deferred returning a string.
"""

def buildProtocol(addr):
"""
Return a protocol returning a string.
"""

class FingerSetterFactoryFromService(protocol.ServerFactory):

implements(IFingerSetterFactory)

protocol = FingerSetterProtocol

def __init__(self, service):
self.service = service

def setUser(self, user, status):
self.service.setUser(user, status)

components.registerAdapter(FingerSetterFactoryFromService,
IFingerSetterService,
IFingerSetterFactory)

class IRCReplyBot(irc.IRCClient):

2.1. Developer Guides 85

Twisted Documentation, Release 16.0.0

def connectionMade(self):
self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split('!')[0]
if self.nickname.lower() == channel.lower():

d = self.factory.getUser(msg)
d.addErrback(catchError)
d.addCallback(lambda m: "Status of %s: %s" % (msg, m))
d.addCallback(lambda m: self.msg(user, m))

class IIRCClientFactory(Interface):

"""
@ivar nickname
"""

def getUser(user):
"""
Return a deferred returning a string.
"""

def buildProtocol(addr):
"""
Return a protocol.
"""

class IRCClientFactoryFromService(protocol.ClientFactory):

implements(IIRCClientFactory)

protocol = IRCReplyBot
nickname = None

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(IRCClientFactoryFromService,
IFingerService,
IIRCClientFactory)

class UserStatusTree(resource.Resource):

def __init__(self, service):
resource.Resource.__init__(self)
self.service=service

add a specific child for the path "RPC2"
self.putChild("RPC2", UserStatusXR(self.service))

need to do this for resources at the root of the site

86 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

self.putChild("", self)

def _cb_render_GET(self, users, request):
userOutput = ''.join(["%s" % (user, user)

for user in users])
request.write("""

<html><head><title>Users</title></head><body>
<h1>Users</h1>

%s
</body></html>""" % userOutput)

request.finish()

def render_GET(self, request):
d = self.service.getUsers()
d.addCallback(self._cb_render_GET, request)

signal that the rendering is not complete
return server.NOT_DONE_YET

def getChild(self, path, request):
return UserStatus(user=path, service=self.service)

components.registerAdapter(UserStatusTree, IFingerService, resource.IResource)

class UserStatus(resource.Resource):

def __init__(self, user, service):
resource.Resource.__init__(self)
self.user = user
self.service = service

def _cb_render_GET(self, status, request):
request.write("""<html><head><title>%s</title></head>
<body><h1>%s</h1>
<p>%s</p>
</body></html>""" % (self.user, self.user, status))
request.finish()

def render_GET(self, request):
d = self.service.getUser(self.user)
d.addCallback(self._cb_render_GET, request)

signal that the rendering is not complete
return server.NOT_DONE_YET

class UserStatusXR(xmlrpc.XMLRPC):

def __init__(self, service):
xmlrpc.XMLRPC.__init__(self)
self.service = service

def xmlrpc_getUser(self, user):
return self.service.getUser(user)

def xmlrpc_getUsers(self):

2.1. Developer Guides 87

Twisted Documentation, Release 16.0.0

return self.service.getUsers()

class FingerService(service.Service):

implements(IFingerService)

def __init__(self, filename):
self.filename = filename
self.users = {}

def _read(self):
self.users.clear()
for line in file(self.filename):

user, status = line.split(':', 1)
user = user.strip()
status = status.strip()
self.users[user] = status

self.call = reactor.callLater(30, self._read)

def getUser(self, user):
return defer.succeed(self.users.get(user, "No such user"))

def getUsers(self):
return defer.succeed(self.users.keys())

def startService(self):
self._read()
service.Service.startService(self)

def stopService(self):
service.Service.stopService(self)
self.call.cancel()

application = service.Application('finger', uid=1, gid=1)
f = FingerService('/etc/users')
serviceCollection = service.IServiceCollection(application)
f.setServiceParent(serviceCollection)
internet.TCPServer(79, IFingerFactory(f)

).setServiceParent(serviceCollection)
internet.TCPServer(8000, server.Site(resource.IResource(f))

).setServiceParent(serviceCollection)
i = IIRCClientFactory(f)
i.nickname = 'fingerbot'
internet.TCPClient('irc.freenode.org', 6667, i

).setServiceParent(serviceCollection)

The Evolution of Finger: Twisted client support using Perspective Broker

Introduction

This is the seventh part of the Twisted tutorial Twisted from Scratch, or The Evolution of Finger .

In this part, we add a Perspective Broker service to the finger application so that Twisted clients can access the finger
server. Perspective Broker is introduced in depth in its own section of the core howto index.

88 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

Use Perspective Broker

We add support for perspective broker, Twisted’s native remote object protocol. Now, Twisted clients will not have to
go through XML-RPCish contortions to get information about users.

finger21.tac

Do everything properly, and componentize
from twisted.application import internet, service
from twisted.internet import protocol, reactor, defer
from twisted.words.protocols import irc
from twisted.protocols import basic
from twisted.python import components
from twisted.web import resource, server, static, xmlrpc
from twisted.spread import pb
from zope.interface import Interface, implements
import cgi

class IFingerService(Interface):

def getUser(user):
"""
Return a deferred returning a string.
"""

def getUsers():
"""
Return a deferred returning a list of strings.
"""

class IFingerSetterService(Interface):

def setUser(user, status):
"""
Set the user's status to something.
"""

def catchError(err):
return "Internal error in server"

class FingerProtocol(basic.LineReceiver):

def lineReceived(self, user):
d = self.factory.getUser(user)
d.addErrback(catchError)
def writeValue(value):

self.transport.write(value+'\r\n')
self.transport.loseConnection()

d.addCallback(writeValue)

class IFingerFactory(Interface):

def getUser(user):
"""
Return a deferred returning a string.

2.1. Developer Guides 89

Twisted Documentation, Release 16.0.0

"""

def buildProtocol(addr):
"""
Return a protocol returning a string.
"""

class FingerFactoryFromService(protocol.ServerFactory):

implements(IFingerFactory)

protocol = FingerProtocol

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(FingerFactoryFromService,
IFingerService,
IFingerFactory)

class FingerSetterProtocol(basic.LineReceiver):

def connectionMade(self):
self.lines = []

def lineReceived(self, line):
self.lines.append(line)

def connectionLost(self, reason):
if len(self.lines) == 2:

self.factory.setUser(*self.lines)

class IFingerSetterFactory(Interface):

def setUser(user, status):
"""
Return a deferred returning a string.
"""

def buildProtocol(addr):
"""
Return a protocol returning a string.
"""

class FingerSetterFactoryFromService(protocol.ServerFactory):

implements(IFingerSetterFactory)

protocol = FingerSetterProtocol

def __init__(self, service):

90 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

self.service = service

def setUser(self, user, status):
self.service.setUser(user, status)

components.registerAdapter(FingerSetterFactoryFromService,
IFingerSetterService,
IFingerSetterFactory)

class IRCReplyBot(irc.IRCClient):

def connectionMade(self):
self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split('!')[0]
if self.nickname.lower() == channel.lower():

d = self.factory.getUser(msg)
d.addErrback(catchError)
d.addCallback(lambda m: "Status of %s: %s" % (msg, m))
d.addCallback(lambda m: self.msg(user, m))

class IIRCClientFactory(Interface):

"""
@ivar nickname
"""

def getUser(user):
"""
Return a deferred returning a string.
"""

def buildProtocol(addr):
"""
Return a protocol.
"""

class IRCClientFactoryFromService(protocol.ClientFactory):

implements(IIRCClientFactory)

protocol = IRCReplyBot
nickname = None

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(IRCClientFactoryFromService,
IFingerService,

2.1. Developer Guides 91

Twisted Documentation, Release 16.0.0

IIRCClientFactory)

class UserStatusTree(resource.Resource):

def __init__(self, service):
resource.Resource.__init__(self)
self.service=service

add a specific child for the path "RPC2"
self.putChild("RPC2", UserStatusXR(self.service))

need to do this for resources at the root of the site
self.putChild("", self)

def _cb_render_GET(self, users, request):
userOutput = ''.join(["%s" % (user, user)

for user in users])
request.write("""

<html><head><title>Users</title></head><body>
<h1>Users</h1>

%s
</body></html>""" % userOutput)

request.finish()

def render_GET(self, request):
d = self.service.getUsers()
d.addCallback(self._cb_render_GET, request)

signal that the rendering is not complete
return server.NOT_DONE_YET

def getChild(self, path, request):
return UserStatus(user=path, service=self.service)

components.registerAdapter(UserStatusTree, IFingerService, resource.IResource)

class UserStatus(resource.Resource):

def __init__(self, user, service):
resource.Resource.__init__(self)
self.user = user
self.service = service

def _cb_render_GET(self, status, request):
request.write("""<html><head><title>%s</title></head>
<body><h1>%s</h1>
<p>%s</p>
</body></html>""" % (self.user, self.user, status))
request.finish()

def render_GET(self, request):
d = self.service.getUser(self.user)
d.addCallback(self._cb_render_GET, request)

signal that the rendering is not complete

92 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

return server.NOT_DONE_YET

class UserStatusXR(xmlrpc.XMLRPC):

def __init__(self, service):
xmlrpc.XMLRPC.__init__(self)
self.service = service

def xmlrpc_getUser(self, user):
return self.service.getUser(user)

def xmlrpc_getUsers(self):
return self.service.getUsers()

class IPerspectiveFinger(Interface):

def remote_getUser(username):
"""
Return a user's status.
"""

def remote_getUsers():
"""
Return a user's status.
"""

class PerspectiveFingerFromService(pb.Root):

implements(IPerspectiveFinger)

def __init__(self, service):
self.service = service

def remote_getUser(self, username):
return self.service.getUser(username)

def remote_getUsers(self):
return self.service.getUsers()

components.registerAdapter(PerspectiveFingerFromService,
IFingerService,
IPerspectiveFinger)

class FingerService(service.Service):

implements(IFingerService)

def __init__(self, filename):
self.filename = filename
self.users = {}

def _read(self):
self.users.clear()
for line in file(self.filename):

2.1. Developer Guides 93

Twisted Documentation, Release 16.0.0

user, status = line.split(':', 1)
user = user.strip()
status = status.strip()
self.users[user] = status

self.call = reactor.callLater(30, self._read)

def getUser(self, user):
return defer.succeed(self.users.get(user, "No such user"))

def getUsers(self):
return defer.succeed(self.users.keys())

def startService(self):
self._read()
service.Service.startService(self)

def stopService(self):
service.Service.stopService(self)
self.call.cancel()

application = service.Application('finger', uid=1, gid=1)
f = FingerService('/etc/users')
serviceCollection = service.IServiceCollection(application)
f.setServiceParent(serviceCollection)
internet.TCPServer(79, IFingerFactory(f)

).setServiceParent(serviceCollection)
internet.TCPServer(8000, server.Site(resource.IResource(f))

).setServiceParent(serviceCollection)
i = IIRCClientFactory(f)
i.nickname = 'fingerbot'
internet.TCPClient('irc.freenode.org', 6667, i

).setServiceParent(serviceCollection)
internet.TCPServer(8889, pb.PBServerFactory(IPerspectiveFinger(f))

).setServiceParent(serviceCollection)

A simple client to test the perspective broker finger:

fingerPBclient.py

test the PB finger on port 8889
this code is essentially the same as
the first example in howto/pb-usage

from twisted.spread import pb
from twisted.internet import reactor

def gotObject(object):
print "got object:", object
object.callRemote("getUser","moshez").addCallback(gotData)

or
object.callRemote("getUsers").addCallback(gotData)

def gotData(data):
print 'server sent:', data
reactor.stop()

def gotNoObject(reason):
print "no object:",reason

94 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

reactor.stop()

factory = pb.PBClientFactory()
reactor.connectTCP("127.0.0.1",8889, factory)
factory.getRootObject().addCallbacks(gotObject,gotNoObject)
reactor.run()

The Evolution of Finger: using a single factory for multiple protocols

Introduction

This is the eighth part of the Twisted tutorial Twisted from Scratch, or The Evolution of Finger .

In this part, we add HTTPS support to our web frontend, showing how to have a single factory listen on multiple ports.
More information on using SSL in Twisted can be found in the SSL howto .

Support HTTPS

All we need to do to code an HTTPS site is just write a context factory (in this case, which loads the certificate from a
certain file) and then use the twisted.application.internet.SSLServer method. Note that one factory (in this case, a site)
can listen on multiple ports with multiple protocols.

finger22.py

Do everything properly, and componentize
from twisted.application import internet, service
from twisted.internet import protocol, reactor, defer
from twisted.words.protocols import irc
from twisted.protocols import basic
from twisted.python import components
from twisted.web import resource, server, static, xmlrpc
from twisted.spread import pb
from zope.interface import Interface, implements
from OpenSSL import SSL
import cgi

class IFingerService(Interface):

def getUser(user):
"""
Return a deferred returning a string.
"""

def getUsers():
"""
Return a deferred returning a list of strings.
"""

class IFingerSetterService(Interface):

def setUser(user, status):
"""
Set the user's status to something.
"""

2.1. Developer Guides 95

Twisted Documentation, Release 16.0.0

def catchError(err):
return "Internal error in server"

class FingerProtocol(basic.LineReceiver):

def lineReceived(self, user):
d = self.factory.getUser(user)
d.addErrback(catchError)
def writeValue(value):

self.transport.write(value+'\r\n')
self.transport.loseConnection()

d.addCallback(writeValue)

class IFingerFactory(Interface):

def getUser(user):
"""
Return a deferred returning a string.
"""

def buildProtocol(addr):
"""
Return a protocol returning a string.
"""

class FingerFactoryFromService(protocol.ServerFactory):

implements(IFingerFactory)

protocol = FingerProtocol

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(FingerFactoryFromService,
IFingerService,
IFingerFactory)

class FingerSetterProtocol(basic.LineReceiver):

def connectionMade(self):
self.lines = []

def lineReceived(self, line):
self.lines.append(line)

def connectionLost(self, reason):
if len(self.lines) == 2:

self.factory.setUser(*self.lines)

96 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

class IFingerSetterFactory(Interface):

def setUser(user, status):
"""
Return a deferred returning a string.
"""

def buildProtocol(addr):
"""
Return a protocol returning a string.
"""

class FingerSetterFactoryFromService(protocol.ServerFactory):

implements(IFingerSetterFactory)

protocol = FingerSetterProtocol

def __init__(self, service):
self.service = service

def setUser(self, user, status):
self.service.setUser(user, status)

components.registerAdapter(FingerSetterFactoryFromService,
IFingerSetterService,
IFingerSetterFactory)

class IRCReplyBot(irc.IRCClient):

def connectionMade(self):
self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split('!')[0]
if self.nickname.lower() == channel.lower():

d = self.factory.getUser(msg)
d.addErrback(catchError)
d.addCallback(lambda m: "Status of %s: %s" % (msg, m))
d.addCallback(lambda m: self.msg(user, m))

class IIRCClientFactory(Interface):

"""
@ivar nickname
"""

def getUser(user):
"""
Return a deferred returning a string.
"""

def buildProtocol(addr):

2.1. Developer Guides 97

Twisted Documentation, Release 16.0.0

"""
Return a protocol.
"""

class IRCClientFactoryFromService(protocol.ClientFactory):

implements(IIRCClientFactory)

protocol = IRCReplyBot
nickname = None

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(IRCClientFactoryFromService,
IFingerService,
IIRCClientFactory)

class UserStatusTree(resource.Resource):

def __init__(self, service):
resource.Resource.__init__(self)
self.service=service

add a specific child for the path "RPC2"
self.putChild("RPC2", UserStatusXR(self.service))

need to do this for resources at the root of the site
self.putChild("", self)

def _cb_render_GET(self, users, request):
userOutput = ''.join(["%s" % (user, user)

for user in users])
request.write("""

<html><head><title>Users</title></head><body>
<h1>Users</h1>

%s
</body></html>""" % userOutput)

request.finish()

def render_GET(self, request):
d = self.service.getUsers()
d.addCallback(self._cb_render_GET, request)

signal that the rendering is not complete
return server.NOT_DONE_YET

def getChild(self, path, request):
return UserStatus(user=path, service=self.service)

components.registerAdapter(UserStatusTree, IFingerService, resource.IResource)

98 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

class UserStatus(resource.Resource):

def __init__(self, user, service):
resource.Resource.__init__(self)
self.user = user
self.service = service

def _cb_render_GET(self, status, request):
request.write("""<html><head><title>%s</title></head>
<body><h1>%s</h1>
<p>%s</p>
</body></html>""" % (self.user, self.user, status))
request.finish()

def render_GET(self, request):
d = self.service.getUser(self.user)
d.addCallback(self._cb_render_GET, request)

signal that the rendering is not complete
return server.NOT_DONE_YET

class UserStatusXR(xmlrpc.XMLRPC):

def __init__(self, service):
xmlrpc.XMLRPC.__init__(self)
self.service = service

def xmlrpc_getUser(self, user):
return self.service.getUser(user)

def xmlrpc_getUsers(self):
return self.service.getUsers()

class IPerspectiveFinger(Interface):

def remote_getUser(username):
"""
Return a user's status.
"""

def remote_getUsers():
"""
Return a user's status.
"""

class PerspectiveFingerFromService(pb.Root):

implements(IPerspectiveFinger)

def __init__(self, service):
self.service = service

def remote_getUser(self, username):
return self.service.getUser(username)

def remote_getUsers(self):

2.1. Developer Guides 99

Twisted Documentation, Release 16.0.0

return self.service.getUsers()

components.registerAdapter(PerspectiveFingerFromService,
IFingerService,
IPerspectiveFinger)

class FingerService(service.Service):

implements(IFingerService)

def __init__(self, filename):
self.filename = filename
self.users = {}

def _read(self):
self.users.clear()
for line in file(self.filename):

user, status = line.split(':', 1)
user = user.strip()
status = status.strip()
self.users[user] = status

self.call = reactor.callLater(30, self._read)

def getUser(self, user):
return defer.succeed(self.users.get(user, "No such user"))

def getUsers(self):
return defer.succeed(self.users.keys())

def startService(self):
self._read()
service.Service.startService(self)

def stopService(self):
service.Service.stopService(self)
self.call.cancel()

class ServerContextFactory:

def getContext(self):
"""
Create an SSL context.

This is a sample implementation that loads a certificate from a file
called 'server.pem'.
"""
ctx = SSL.Context(SSL.SSLv23_METHOD)
ctx.use_certificate_file('server.pem')
ctx.use_privatekey_file('server.pem')
return ctx

application = service.Application('finger', uid=1, gid=1)
f = FingerService('/etc/users')
serviceCollection = service.IServiceCollection(application)
f.setServiceParent(serviceCollection)

100 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

internet.TCPServer(79, IFingerFactory(f)
).setServiceParent(serviceCollection)

site = server.Site(resource.IResource(f))
internet.TCPServer(8000, site

).setServiceParent(serviceCollection)
internet.SSLServer(443, site, ServerContextFactory()

).setServiceParent(serviceCollection)
i = IIRCClientFactory(f)
i.nickname = 'fingerbot'
internet.TCPClient('irc.freenode.org', 6667, i

).setServiceParent(serviceCollection)
internet.TCPServer(8889, pb.PBServerFactory(IPerspectiveFinger(f))

).setServiceParent(serviceCollection)

The Evolution of Finger: a Twisted finger client

Introduction

This is the ninth part of the Twisted tutorial Twisted from Scratch, or The Evolution of Finger .

In this part, we develop a client for the finger server: a proxy finger server which forwards requests to another finger
server.

Finger Proxy

Writing new clients with Twisted is much like writing new servers. We implement the protocol, which just gathers up
all the data, and give it to the factory. The factory keeps a deferred which is triggered if the connection either fails or
succeeds. When we use the client, we first make sure the deferred will never fail, by producing a message in that case.
Implementing a wrapper around client which just returns the deferred is a common pattern. While less flexible than
using the factory directly, it’s also more convenient.

fingerproxy.tac

finger proxy
from twisted.application import internet, service
from twisted.internet import defer, protocol, reactor
from twisted.protocols import basic
from twisted.python import components
from zope.interface import Interface, implements

def catchError(err):
return "Internal error in server"

class IFingerService(Interface):

def getUser(user):
"""Return a deferred returning a string"""

def getUsers():
"""Return a deferred returning a list of strings"""

class IFingerFactory(Interface):

2.1. Developer Guides 101

Twisted Documentation, Release 16.0.0

def getUser(user):
"""Return a deferred returning a string"""

def buildProtocol(addr):
"""Return a protocol returning a string"""

class FingerProtocol(basic.LineReceiver):

def lineReceived(self, user):
d = self.factory.getUser(user)
d.addErrback(catchError)
def writeValue(value):

self.transport.write(value)
self.transport.loseConnection()

d.addCallback(writeValue)

class FingerFactoryFromService(protocol.ClientFactory):

implements(IFingerFactory)

protocol = FingerProtocol

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(FingerFactoryFromService,
IFingerService,
IFingerFactory)

class FingerClient(protocol.Protocol):

def connectionMade(self):
self.transport.write(self.factory.user+"\r\n")
self.buf = []

def dataReceived(self, data):
self.buf.append(data)

def connectionLost(self, reason):
self.factory.gotData(''.join(self.buf))

class FingerClientFactory(protocol.ClientFactory):

protocol = FingerClient

def __init__(self, user):
self.user = user
self.d = defer.Deferred()

def clientConnectionFailed(self, _, reason):
self.d.errback(reason)

102 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

def gotData(self, data):
self.d.callback(data)

def finger(user, host, port=79):
f = FingerClientFactory(user)
reactor.connectTCP(host, port, f)
return f.d

class ProxyFingerService(service.Service):
implements(IFingerService)

def getUser(self, user):
try:

user, host = user.split('@', 1)
except:

user = user.strip()
host = '127.0.0.1'

ret = finger(user, host)
ret.addErrback(lambda _: "Could not connect to remote host")
return ret

def getUsers(self):
return defer.succeed([])

application = service.Application('finger', uid=1, gid=1)
f = ProxyFingerService()
internet.TCPServer(7779, IFingerFactory(f)).setServiceParent(

service.IServiceCollection(application))

The Evolution of Finger: making a finger library

Introduction

This is the tenth part of the Twisted tutorial Twisted from Scratch, or The Evolution of Finger .

In this part, we separate the application code that launches a finger service from the library code which defines a finger
service, placing the application in a Twisted Application Configuration (.tac) file. We also move configuration (such
as HTML templates) into separate files. Configuration and deployment with .tac and twistd are introduced in Using
the Twisted Application Framework .

Organization

Now this code, while quite modular and well-designed, isn’t properly organized. Everything above the
application= belongs in a module, and the HTML templates all belong in separate files.

We can use the templateFile and templateDirectory attributes to indicate what HTML template file to use
for each Page, and where to look for it.

organized-finger.tac

organized-finger.tac
eg: twistd -ny organized-finger.tac

import finger

2.1. Developer Guides 103

Twisted Documentation, Release 16.0.0

from twisted.internet import protocol, reactor, defer
from twisted.spread import pb
from twisted.web import resource, server
from twisted.application import internet, service, strports
from twisted.python import log

application = service.Application('finger', uid=1, gid=1)
f = finger.FingerService('/etc/users')
serviceCollection = service.IServiceCollection(application)
internet.TCPServer(79, finger.IFingerFactory(f)

).setServiceParent(serviceCollection)

site = server.Site(resource.IResource(f))
internet.TCPServer(8000, site

).setServiceParent(serviceCollection)

internet.SSLServer(443, site, finger.ServerContextFactory()
).setServiceParent(serviceCollection)

i = finger.IIRCClientFactory(f)
i.nickname = 'fingerbot'
internet.TCPClient('irc.freenode.org', 6667, i

).setServiceParent(serviceCollection)

internet.TCPServer(8889, pb.PBServerFactory(finger.IPerspectiveFinger(f))
).setServiceParent(serviceCollection)

Note that our program is now quite separated. We have:

• Code (in the module)

• Configuration (file above)

• Presentation (templates)

• Content (/etc/users)

• Deployment (twistd)

Prototypes don’t need this level of separation, so our earlier examples all bunched together. However, real applications
do. Thankfully, if we write our code correctly, it is easy to achieve a good separation of parts.

Easy Configuration

We can also supply easy configuration for common cases with a makeService method that will also help build .tap
files later:

finger_config.py

Easy configuration
makeService from finger module

def makeService(config):
finger on port 79
s = service.MultiService()
f = FingerService(config['file'])
h = internet.TCPServer(79, IFingerFactory(f))
h.setServiceParent(s)

104 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

website on port 8000
r = resource.IResource(f)
r.templateDirectory = config['templates']
site = server.Site(r)
j = internet.TCPServer(8000, site)
j.setServiceParent(s)

ssl on port 443
if config.get('ssl'):

k = internet.SSLServer(443, site, ServerContextFactory())
k.setServiceParent(s)

irc fingerbot
if 'ircnick' in config:

i = IIRCClientFactory(f)
i.nickname = config['ircnick']
ircserver = config['ircserver']
b = internet.TCPClient(ircserver, 6667, i)
b.setServiceParent(s)

Pespective Broker on port 8889
if 'pbport' in config:

m = internet.TCPServer(
int(config['pbport']),
pb.PBServerFactory(IPerspectiveFinger(f)))

m.setServiceParent(s)

return s

And we can write simpler files now:

simple-finger.tac

simple-finger.tac
eg: twistd -ny simple-finger.tac

from twisted.application import service

import finger

options = { 'file': '/etc/users',
'templates': '/usr/share/finger/templates',
'ircnick': 'fingerbot',
'ircserver': 'irc.freenode.net',
'pbport': 8889,
'ssl': 'ssl=0' }

ser = finger.makeService(options)
application = service.Application('finger', uid=1, gid=1)
ser.setServiceParent(service.IServiceCollection(application))

% twistd -ny simple-finger.tac

Note: the finger user still has ultimate power: they can use makeService, or they can use the lower-level interface
if they have specific needs (maybe an IRC server on some other port? Maybe we want the non-SSL webserver to listen
only locally? etc. etc.). This is an important design principle: never force a layer of abstraction; allow usage of layers
of abstractions instead.

The pasta theory of design:

2.1. Developer Guides 105

Twisted Documentation, Release 16.0.0

Spaghetti Each piece of code interacts with every other piece of code (can be implemented with GOTO, functions,
objects).

Lasagna Code has carefully designed layers. Each layer is, in theory independent. However low-level layers usually
cannot be used easily, and high-level layers depend on low-level layers.

Ravioli Each part of the code is useful by itself. There is a thin layer of interfaces between various parts (the sauce).
Each part can be usefully be used elsewhere.

...but sometimes, the user just wants to order “Ravioli”, so one coarse-grain easily definable layer of abstraction on top
of it all can be useful.

The Evolution of Finger: configuration and packaging of the finger service

Introduction

This is the eleventh part of the Twisted tutorial Twisted from Scratch, or The Evolution of Finger .

In this part, we make it easier for non-programmers to configure a finger server and show how to package it in the .deb
and RPM package formats. Plugins are discussed further in the Twisted Plugin System howto. Writing twistd plugins
is covered in Writing a twistd Plugin , and .tac applications are covered in Using the Twisted Application Framework .

Plugins

So far, the user had to be somewhat of a programmer to be able to configure stuff. Maybe we can eliminate even that?
Move old code to finger/__init__.py and...

Full source code for finger module here:

finger.py

finger.py module

from zope.interface import Interface, implements

from twisted.application import internet, service
from twisted.internet import protocol, reactor, defer
from twisted.words.protocols import irc
from twisted.protocols import basic
from twisted.python import components, log
from twisted.web import resource, server, xmlrpc
from twisted.spread import pb

from OpenSSL import SSL

class IFingerService(Interface):

def getUser(user):
"""
Return a deferred returning a string.
"""

def getUsers():
"""
Return a deferred returning a list of strings.
"""

106 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

class IFingerSetterService(Interface):

def setUser(user, status):
"""
Set the user's status to something.
"""

def catchError(err):
return "Internal error in server"

class FingerProtocol(basic.LineReceiver):

def lineReceived(self, user):
d = self.factory.getUser(user)
d.addErrback(catchError)
def writeValue(value):

self.transport.write(value+'\n')
self.transport.loseConnection()

d.addCallback(writeValue)

class IFingerFactory(Interface):

def getUser(user):
"""
Return a deferred returning a string.
"""

def buildProtocol(addr):
"""
Return a protocol returning a string.
"""

class FingerFactoryFromService(protocol.ServerFactory):
implements(IFingerFactory)

protocol = FingerProtocol

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(FingerFactoryFromService,
IFingerService,
IFingerFactory)

class FingerSetterProtocol(basic.LineReceiver):

def connectionMade(self):
self.lines = []

def lineReceived(self, line):

2.1. Developer Guides 107

Twisted Documentation, Release 16.0.0

self.lines.append(line)

def connectionLost(self, reason):
if len(self.lines) == 2:

self.factory.setUser(*self.lines)

class IFingerSetterFactory(Interface):

def setUser(user, status):
"""
Return a deferred returning a string.
"""

def buildProtocol(addr):
"""
Return a protocol returning a string.
"""

class FingerSetterFactoryFromService(protocol.ServerFactory):

implements(IFingerSetterFactory)

protocol = FingerSetterProtocol

def __init__(self, service):
self.service = service

def setUser(self, user, status):
self.service.setUser(user, status)

components.registerAdapter(FingerSetterFactoryFromService,
IFingerSetterService,
IFingerSetterFactory)

class IRCReplyBot(irc.IRCClient):

def connectionMade(self):
self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split('!')[0]
if self.nickname.lower() == channel.lower():

d = self.factory.getUser(msg)
d.addErrback(catchError)
d.addCallback(lambda m: "Status of %s: %s" % (msg, m))
d.addCallback(lambda m: self.msg(user, m))

class IIRCClientFactory(Interface):

"""
@ivar nickname
"""

108 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

def getUser(user):
"""
Return a deferred returning a string.
"""

def buildProtocol(addr):
"""
Return a protocol.
"""

class IRCClientFactoryFromService(protocol.ClientFactory):

implements(IIRCClientFactory)

protocol = IRCReplyBot
nickname = None

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(IRCClientFactoryFromService,
IFingerService,
IIRCClientFactory)

class UserStatusTree(resource.Resource):

template = """<html><head><title>Users</title></head><body>
<h1>Users</h1>

%(users)s

</body>
</html>"""

def __init__(self, service):
resource.Resource.__init__(self)
self.service = service

def getChild(self, path, request):
if path == '':

return self
elif path == 'RPC2':

return UserStatusXR(self.service)
else:

return UserStatus(path, self.service)

def render_GET(self, request):
users = self.service.getUsers()
def cbUsers(users):

request.write(self.template % {'users': ''.join([
Name should be quoted properly these uses.
'%s' % (name, name)
for name in users])})

2.1. Developer Guides 109

Twisted Documentation, Release 16.0.0

request.finish()
users.addCallback(cbUsers)
def ebUsers(err):

log.err(err, "UserStatusTree failed")
request.finish()

users.addErrback(ebUsers)
return server.NOT_DONE_YET

components.registerAdapter(UserStatusTree, IFingerService, resource.IResource)

class UserStatus(resource.Resource):

template='''<html><head><title>%(title)s</title></head>
<body><h1>%(name)s</h1><p>%(status)s</p></body></html>'''

def __init__(self, user, service):
resource.Resource.__init__(self)
self.user = user
self.service = service

def render_GET(self, request):
status = self.service.getUser(self.user)
def cbStatus(status):

request.write(self.template % {
'title': self.user,
'name': self.user,
'status': status})

request.finish()
status.addCallback(cbStatus)
def ebStatus(err):

log.err(err, "UserStatus failed")
request.finish()

status.addErrback(ebStatus)
return server.NOT_DONE_YET

class UserStatusXR(xmlrpc.XMLRPC):

def __init__(self, service):
xmlrpc.XMLRPC.__init__(self)
self.service = service

def xmlrpc_getUser(self, user):
return self.service.getUser(user)

def xmlrpc_getUsers(self):
return self.service.getUsers()

class IPerspectiveFinger(Interface):

def remote_getUser(username):
"""
Return a user's status.
"""

def remote_getUsers():

110 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

"""
Return a user's status.
"""

class PerspectiveFingerFromService(pb.Root):

implements(IPerspectiveFinger)

def __init__(self, service):
self.service = service

def remote_getUser(self, username):
return self.service.getUser(username)

def remote_getUsers(self):
return self.service.getUsers()

components.registerAdapter(PerspectiveFingerFromService,
IFingerService,
IPerspectiveFinger)

class FingerService(service.Service):

implements(IFingerService)

def __init__(self, filename):
self.filename = filename

def _read(self):
self.users = {}
for line in file(self.filename):

user, status = line.split(':', 1)
user = user.strip()
status = status.strip()
self.users[user] = status

self.call = reactor.callLater(30, self._read)

def getUser(self, user):
return defer.succeed(self.users.get(user, "No such user"))

def getUsers(self):
return defer.succeed(self.users.keys())

def startService(self):
self._read()
service.Service.startService(self)

def stopService(self):
service.Service.stopService(self)
self.call.cancel()

class ServerContextFactory:

def getContext(self):
"""

2.1. Developer Guides 111

Twisted Documentation, Release 16.0.0

Create an SSL context.

This is a sample implementation that loads a certificate from a file
called 'server.pem'.
"""
ctx = SSL.Context(SSL.SSLv23_METHOD)
ctx.use_certificate_file('server.pem')
ctx.use_privatekey_file('server.pem')
return ctx

Easy configuration

def makeService(config):
finger on port 79
s = service.MultiService()
f = FingerService(config['file'])
h = internet.TCPServer(1079, IFingerFactory(f))
h.setServiceParent(s)

website on port 8000
r = resource.IResource(f)
r.templateDirectory = config['templates']
site = server.Site(r)
j = internet.TCPServer(8000, site)
j.setServiceParent(s)

ssl on port 443
if config.get('ssl'):
k = internet.SSLServer(443, site, ServerContextFactory())
k.setServiceParent(s)

irc fingerbot
if 'ircnick' in config:

i = IIRCClientFactory(f)
i.nickname = config['ircnick']
ircserver = config['ircserver']
b = internet.TCPClient(ircserver, 6667, i)
b.setServiceParent(s)

Pespective Broker on port 8889
if 'pbport' in config:

m = internet.TCPServer(
int(config['pbport']),
pb.PBServerFactory(IPerspectiveFinger(f)))

m.setServiceParent(s)

return s

tap.py

finger/tap.py
from twisted.application import internet, service
from twisted.internet import interfaces
from twisted.python import usage
import finger

112 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

class Options(usage.Options):

optParameters = [
['file', 'f', '/etc/users'],
['templates', 't', '/usr/share/finger/templates'],
['ircnick', 'n', 'fingerbot'],
['ircserver', None, 'irc.freenode.net'],
['pbport', 'p', 8889],
]

optFlags = [['ssl', 's']]

def makeService(config):
return finger.makeService(config)

And register it all:

finger_tutorial.py

from twisted.application.service import ServiceMaker

finger = ServiceMaker(
'finger', 'finger.tap', 'Run a finger service', 'finger')

Note that the second argument to ServiceMaker ,‘‘finger.tap‘‘ , is a reference to a module (finger/tap.py), not
to a filename.

And now, the following works

% sudo twistd -n finger --file=/etc/users --ircnick=fingerbot

For more details about this, see the twistd plugin documentation .

OS Integration

If we already have the “finger” package installed in PYTHONPATH (e.g. we added it to site-packages), we can
achieve easy integration:

Debian
% tap2deb --unsigned -m "Foo <foo@example.com>" --type=python finger.tac
% sudo dpkg -i .build/*.deb

Red Hat / Mandrake
% tap2rpm --type=python finger.tac
% sudo rpm -i *.rpm

These packages will properly install and register init.d scripts, etc. for the given file.

If it doesn’t work on your favorite OS: patches accepted!

Introduction

Twisted is a big system. People are often daunted when they approach it. It’s hard to know where to start looking.

2.1. Developer Guides 113

https://twistedmatrix.com/documents/16.0.0/api/twisted.application.service.ServiceMaker.html

Twisted Documentation, Release 16.0.0

This guide builds a full-fledged Twisted application from the ground up, using most of the important bits of the
framework. There is a lot of code, but don’t be afraid.

The application we are looking at is a “finger” service, along the lines of the familiar service traditionally provided by
UNIX™ servers. We will extend this service slightly beyond the standard, in order to demonstrate some of Twisted’s
higher-level features.

Each section of the tutorial dives straight into applications for various Twisted topics. These topics have their own
introductory howtos listed in the core howto index and in the documentation for other Twisted projects like Twisted
Web and Twisted Words. There are at least three ways to use this tutorial: you may find it useful to read through the
rest of the topics listed in the core howto index before working through the finger tutorial, work through the finger
tutorial and then go back and hit the introductory material that is relevant to the Twisted project you’re working on, or
read the introductory material one piece at a time as it comes up in the finger tutorial.

Contents

This tutorial is split into eleven parts:

1. The Evolution of Finger: building a simple finger service

2. The Evolution of Finger: adding features to the finger service

3. The Evolution of Finger: cleaning up the finger code

4. The Evolution of Finger: moving to a component based architecture

5. The Evolution of Finger: pluggable backends

6. The Evolution of Finger: a web frontend

7. The Evolution of Finger: Twisted client support using Perspective Broker

8. The Evolution of Finger: using a single factory for multiple protocols

9. The Evolution of Finger: a Twisted finger client

10. The Evolution of Finger: making a finger library

11. The Evolution of Finger: configuration and packaging of the finger service

2.1.6 Setting up the TwistedQuotes application

Goal

This document describes how to set up the TwistedQuotes application used in a number of other documents, such as
designing Twisted applications .

Setting up the TwistedQuotes project directory

In order to run the Twisted Quotes example, you will need to do the following:

1. Make a TwistedQuotes directory on your system

2. Place the following files in the TwistedQuotes directory:

• __init__.py

"""
Twisted Quotes
"""

114 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

(this file marks it as a package, see this section of the Python tutorial for more on packages)

• quoters.py

from random import choice

from zope.interface import implements

from TwistedQuotes import quoteproto

class StaticQuoter:
"""
Return a static quote.
"""

implements(quoteproto.IQuoter)

def __init__(self, quote):
self.quote = quote

def getQuote(self):
return self.quote

class FortuneQuoter:
"""
Load quotes from a fortune-format file.
"""
implements(quoteproto.IQuoter)

def __init__(self, filenames):
self.filenames = filenames

def getQuote(self):
quoteFile = file(choice(self.filenames))
quotes = quoteFile.read().split('\n%\n')
quoteFile.close()
return choice(quotes)

• quoteproto.py

from zope.interface import Interface

from twisted.internet.protocol import Factory, Protocol

class IQuoter(Interface):
"""
An object that returns quotes.
"""
def getQuote():

"""
Return a quote.
"""

2.1. Developer Guides 115

http://docs.python.org/tutorial/modules.html#packages

Twisted Documentation, Release 16.0.0

class QOTD(Protocol):
def connectionMade(self):

self.transport.write(self.factory.quoter.getQuote()+'\r\n')
self.transport.loseConnection()

class QOTDFactory(Factory):
"""
A factory for the Quote of the Day protocol.

@type quoter: L{IQuoter} provider
@ivar quoter: An object which provides L{IQuoter} which will be used by

the L{QOTD} protocol to get quotes to emit.
"""
protocol = QOTD

def __init__(self, quoter):
self.quoter = quoter

3. Add the TwistedQuotes directory’s parent to your Python path. For example, if the TwistedQuotes direc-
tory’s path is /mystuff/TwistedQuotes or c:\mystuff\TwistedQuotes add /mystuff to your
Python path. On UNIX this would be export PYTHONPATH=/mystuff:$PYTHONPATH , on Microsoft
Windows change the PYTHONPATH variable through the Systems Properties dialog by adding ;c:\mystuff
at the end.

4. Test your package by trying to import it in the Python interpreter:

Python 2.1.3 (#1, Apr 20 2002, 22:45:31)
[GCC 2.95.4 20011002 (Debian prerelease)] on linux2
Type "copyright", "credits" or "license" for more information.
>>> import TwistedQuotes
>>> # No traceback means you're fine.

2.1.7 Designing Twisted Applications

Goals

This document describes how a good Twisted application is structured. It should be useful for beginning Twisted
developers who want to structure their code in a clean, maintainable way that reflects current best practices.

Readers will want to be familiar with writing servers and clients using Twisted.

Example of a modular design: TwistedQuotes

TwistedQuotes is a very simple plugin which is a great demonstration of Twisted’s power. It will export a small
kernel of functionality – Quote of the Day – which can be accessed through every interface that Twisted supports: web
pages, e-mail, instant messaging, a specific Quote of the Day protocol, and more.

Set up the project directory

See the description of setting up the TwistedQuotes example .

116 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

A Look at the Heart of the Application

quoters.py

from random import choice

from zope.interface import implements

from TwistedQuotes import quoteproto

class StaticQuoter:
"""
Return a static quote.
"""

implements(quoteproto.IQuoter)

def __init__(self, quote):
self.quote = quote

def getQuote(self):
return self.quote

class FortuneQuoter:
"""
Load quotes from a fortune-format file.
"""
implements(quoteproto.IQuoter)

def __init__(self, filenames):
self.filenames = filenames

def getQuote(self):
quoteFile = file(choice(self.filenames))
quotes = quoteFile.read().split('\n%\n')
quoteFile.close()
return choice(quotes)

This code listing shows us what the Twisted Quotes system is all about. The code doesn’t have any way of talking to
the outside world, but it provides a library which is a clear and uncluttered abstraction: “give me the quote of the day”
.

Note that this module does not import any Twisted functionality at all! The reason for doing things this way is
integration. If your “business objects” are not stuck to your user interface, you can make a module that can integrate
those objects with different protocols, GUIs, and file formats. Having such classes provides a way to decouple your
components from each other, by allowing each to be used independently.

In this manner, Twisted itself has minimal impact on the logic of your program. Although the Twisted “dot products”
are highly interoperable, they also follow this approach. You can use them independently because they are not stuck
to each other. They communicate in well-defined ways, and only when that communication provides some additional
feature. Thus, you can use twisted.web with twisted.enterprise , but neither requires the other, because they are
integrated around the concept of Deferreds .

2.1. Developer Guides 117

https://twistedmatrix.com/documents/16.0.0/api/twisted.web.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.enterprise.html

Twisted Documentation, Release 16.0.0

Your Twisted applications should follow this style as much as possible. Have (at least) one module which implements
your specific functionality, independent of any user-interface code.

Next, we’re going to need to associate this abstract logic with some way of displaying it to the user. We’ll do this by
writing a Twisted server protocol, which will respond to the clients that connect to it by sending a quote to the client
and then closing the connection. Note: don’t get too focused on the details of this – different ways to interface with
the user are 90% of what Twisted does, and there are lots of documents describing the different ways to do it.

quoteproto.py

from zope.interface import Interface

from twisted.internet.protocol import Factory, Protocol

class IQuoter(Interface):
"""
An object that returns quotes.
"""
def getQuote():

"""
Return a quote.
"""

class QOTD(Protocol):
def connectionMade(self):

self.transport.write(self.factory.quoter.getQuote()+'\r\n')
self.transport.loseConnection()

class QOTDFactory(Factory):
"""
A factory for the Quote of the Day protocol.

@type quoter: L{IQuoter} provider
@ivar quoter: An object which provides L{IQuoter} which will be used by

the L{QOTD} protocol to get quotes to emit.
"""
protocol = QOTD

def __init__(self, quoter):
self.quoter = quoter

This is a very straightforward Protocol implementation, and the pattern described above is repeated here. The
Protocol contains essentially no logic of its own, just enough to tie together an object which can generate quotes (a
Quoter) and an object which can relay bytes to a TCP connection (a Transport). When a client connects to this
server, a QOTD instance is created, and its connectionMade method is called.

The QOTDFactory ‘s role is to specify to the Twisted framework how to create a Protocol instance that will
handle the connection. Twisted will not instantiate a QOTDFactory ; you will do that yourself later, in a twistd
plug-in.

Note: you can read more specifics of Protocol and Factory in the Writing Servers HOWTO.

Once we have an abstraction – a Quoter – and we have a mechanism to connect it to the network – the QOTD protocol
– the next thing to do is to put the last link in the chain of functionality between abstraction and user. This last link will

118 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

allow a user to choose a Quoter and configure the protocol. Writing this configuration is covered in the Application
HOWTO .

2.1.8 Overview of Twisted Internet

Twisted Internet is a collection of compatible event-loops for Python. It contains the code to dispatch events to
interested observers and a portable API so that observers need not care about which event loop is running. Thus, it is
possible to use the same code for different loops, from Twisted’s basic, yet portable, select -based loop to the loops
of various GUI toolkits like GTK+ or Tk.

Twisted Internet contains the various interfaces to the reactor API, whose usage is documented in the low-level chap-
ter. Those APIs are IReactorCore , IReactorTCP , IReactorSSL , IReactorUNIX , IReactorUDP , IReactorTime ,
IReactorProcess , IReactorMulticast and IReactorThreads . The reactor APIs allow non-persistent calls to be made.

Twisted Internet also covers the interfaces for the various transports, in ITransport and friends. These interfaces allow
Twisted network code to be written without regard to the underlying implementation of the transport.

The IProtocolFactory dictates how factories, which are usually a large part of third party code, are written.

2.1.9 Reactor Overview

This HOWTO introduces the Twisted reactor, describes the basics of the reactor and links to the various reactor
interfaces.

Reactor Basics

The reactor is the core of the event loop within Twisted – the loop which drives applications using Twisted. The
event loop is a programming construct that waits for and dispatches events or messages in a program. It works by
calling some internal or external “event provider”, which generally blocks until an event has arrived, and then calls
the relevant event handler (“dispatches the event”). The reactor provides basic interfaces to a number of services,
including network communications, threading, and event dispatching.

For information about using the reactor and the Twisted event loop, see:

• the event dispatching howtos: Scheduling and Using Deferreds ;

• the communication howtos: TCP servers , TCP clients , UDP networking and Using processes ; and

• Using threads .

There are multiple implementations of the reactor, each modified to provide better support for specialized features over
the default implementation. More information about these and how to use a particular implementation is available via
Choosing a Reactor .

Twisted applications can use the interfaces in twisted.application.service to configure and run the application instead
of using boilerplate reactor code. See Using Application for an introduction to Application.

Using the reactor object

You can get to the reactor object using the following code:

from twisted.internet import reactor

The reactor usually implements a set of interfaces, but depending on the chosen reactor and the platform, some of the
interfaces may not be implemented:

2.1. Developer Guides 119

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorCore.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorTCP.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorSSL.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorUNIX.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorUDP.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorTime.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorProcess.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorMulticast.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorThreads.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.ITransport.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IProtocolFactory.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.application.service.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.reactor.html

Twisted Documentation, Release 16.0.0

• IReactorCore : Core (required) functionality.

• IReactorFDSet : Use FileDescriptor objects.

• IReactorProcess : Process management. Read the Using Processes document for more information.

• IReactorSSL : SSL networking support.

• IReactorTCP : TCP networking support. More information can be found in the Writing Servers and Writing
Clients documents.

• IReactorThreads : Threading use and management. More information can be found within Threading In Twisted
.

• IReactorTime : Scheduling interface. More information can be found within Scheduling Tasks .

• IReactorUDP : UDP networking support. More information can be found within UDP Networking .

• IReactorUNIX : UNIX socket support.

• IReactorSocket : Third-party socket support.

2.1.10 Using TLS in Twisted

Overview

This document describes how to secure your communications using TLS (Transport Layer Security) — also known as
SSL (Secure Sockets Layer) — in Twisted servers and clients. It assumes that you know what TLS is, what some of
the major reasons to use it are, and how to generate your own certificates. It also assumes that you are comfortable
with creating TCP servers and clients as described in the server howto and client howto . After reading this document
you should be able to create servers and clients that can use TLS to encrypt their connections, switch from using an
unencrypted channel to an encrypted one mid-connection, and require client authentication.

Using TLS in Twisted requires that you have pyOpenSSL installed. A quick test to verify that you do is to run from
OpenSSL import SSL at a python prompt and not get an error.

Twisted provides TLS support as a transport — that is, as an alternative to TCP. When using TLS, use of
the TCP APIs you’re already familiar with, TCP4ClientEndpoint and TCP4ServerEndpoint — or
reactor.listenTCP and reactor.connectTCP — is replaced by use of parallel TLS APIs (many of which
still use the legacy name “SSL” due to age and/or compatibility with older APIs). To create a TLS server, use
SSL4ServerEndpoint or listenSSL . To create a TLS client, use SSL4ClientEndpoint or connectSSL .

TLS provides transport layer security, but it’s important to understand what “security” means. With respect to TLS it
means three things:

1. Identity: TLS servers (and sometimes clients) present a certificate, offering proof of who they are, so that you
know who you are talking to.

2. Confidentiality: once you know who you are talking to, encryption of the connection ensures that the commu-
nications can’t be understood by any third parties who might be listening in.

3. Integrity: TLS checks the encrypted messages to ensure that they actually came from the party you originally
authenticated to. If the messages fail these checks, then they are discarded and your application does not see
them.

Without identity, neither confidentiality nor integrity is possible. If you don’t know who you’re talking to, then you
might as easily be talking to your bank or to a thief who wants to steal your bank password. Each of the APIs listed
above with “SSL” in the name requires a configuration object called (for historical reasons) a contextFactory.
(Please pardon the somewhat awkward name.) The contextFactory serves three purposes:

120 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorCore.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorFDSet.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorProcess.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorSSL.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorTCP.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorThreads.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorTime.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorUDP.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorUNIX.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorSocket.html
https://github.com/pyca/pyopenssl
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.endpoints.SSL4ServerEndpoint.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorSSL.listenSSL.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.endpoints.SSL4ClientEndpoint.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorSSL.connectSSL.html

Twisted Documentation, Release 16.0.0

1. It provides the materials to prove your own identity to the other side of the connection: in other words, who you
are.

2. It expresses your requirements of the other side’s identity: in other words, who you would like to talk to (and
who you trust to tell you that you’re talking to the right party).

3. It allows you to specify certain specialized options about the way the TLS protocol itself operates.

The requirements of clients and servers are slightly different. Both can provide a certificate to prove their identity, but
commonly, TLS servers provide a certificate, whereas TLS clients check the server’s certificate (to make sure they’re
talking to the right server) and then later identify themselves to the server some other way, often by offering a shared
secret such as a password or API key via an application protocol secured with TLS and not as part of TLS itself.

Since these requirements are slightly different, there are different APIs to construct an appropriate
contextFactory value for a client or a server.

For servers, we can use twisted.internet.ssl.CertificateOptions. In order to prove the server’s identity, you pass the
privateKey and certificate arguments to this object. twisted.internet.ssl.PrivateCertificate.options is a con-
venient way to create a CertificateOptions instance configured to use a particular key and certificate.

For clients, we can use twisted.internet.ssl.optionsForClientTLS. This takes two arguments, hostname (which indi-
cates what hostname must be advertised in the server’s certificate) and optionally trustRoot. By default, options-
ForClientTLS tries to obtain the trust roots from your platform, but you can specify your own.

You may obtain an object suitable to pass as the trustRoot= parameter with an explicit
list of twisted.internet.ssl.Certificate or twisted.internet.ssl.PrivateCertificate instances by calling
twisted.internet.ssl.trustRootFromCertificates. This will cause optionsForClientTLS to accept any connection
so long as the server’s certificate is signed by at least one of the certificates passed.

Note: Currently, Twisted only supports loading of OpenSSL’s default trust roots. If you’ve built OpenSSL yourself,
you must take care to include these in the appropriate location. If you’re using the OpenSSL shipped as part of Mac
OS X 10.5-10.9, this behavior will also be correct. If you’re using Debian, or one of its derivatives like Ubuntu, install
the ca-certificates package to ensure you have trust roots available, and this behavior should also be correct. Work is
ongoing to make platformTrust — the API that optionsForClientTLS uses by default — more robust. For example,
platformTrust should fall back to the “certifi” package if no platform trust roots are available but it doesn’t do that yet.
When this happens, you shouldn’t need to change your code.

TLS echo server and client

Now that we’ve got the theory out of the way, let’s try some working examples of how to get started with a TLS
server. The following examples rely on the files server.pem (private key and self-signed certificate together) and
public.pem (the server’s public certificate by itself).

TLS echo server

echoserv_ssl.py

#!/usr/bin/env python
Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

import sys

from twisted.internet import ssl, protocol, task, defer
from twisted.python import log

2.1. Developer Guides 121

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.ssl.CertificateOptions.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.ssl.PrivateCertificate.options.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.ssl.optionsForClientTLS.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.ssl.optionsForClientTLS.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.ssl.optionsForClientTLS.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.ssl.Certificate.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.ssl.PrivateCertificate.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.ssl.trustRootFromCertificates.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.ssl.optionsForClientTLS.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.ssl.platformTrust.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.ssl.optionsForClientTLS.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.ssl.platformTrust.html
http://pypi.python.org/pypi/certifi

Twisted Documentation, Release 16.0.0

from twisted.python.modules import getModule

import echoserv

def main(reactor):
log.startLogging(sys.stdout)
certData = getModule(__name__).filePath.sibling('server.pem').getContent()
certificate = ssl.PrivateCertificate.loadPEM(certData)
factory = protocol.Factory.forProtocol(echoserv.Echo)
reactor.listenSSL(8000, factory, certificate.options())
return defer.Deferred()

if __name__ == '__main__':
import echoserv_ssl
task.react(echoserv_ssl.main)

This server uses listenSSL to listen for TLS traffic on port 8000, using the certificate and private key contained in the
file server.pem. It uses the same echo example server as the TCP echo server — even going so far as to import its
protocol class. Assuming that you can buy your own TLS certificate from a certificate authority, this is a fairly realistic
TLS server.

TLS echo client

echoclient_ssl.py

#!/usr/bin/env python
Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

from twisted.internet import ssl, task, protocol, endpoints, defer
from twisted.python.modules import getModule

import echoclient

@defer.inlineCallbacks
def main(reactor):

factory = protocol.Factory.forProtocol(echoclient.EchoClient)
certData = getModule(__name__).filePath.sibling('public.pem').getContent()
authority = ssl.Certificate.loadPEM(certData)
options = ssl.optionsForClientTLS(u'example.com', authority)
endpoint = endpoints.SSL4ClientEndpoint(reactor, 'localhost', 8000,

options)
echoClient = yield endpoint.connect(factory)

done = defer.Deferred()
echoClient.connectionLost = lambda reason: done.callback(None)
yield done

if __name__ == '__main__':
import echoclient_ssl
task.react(echoclient_ssl.main)

This client uses SSL4ClientEndpoint to connect to echoserv_ssl.py. It also uses the same echo example client as
the TCP echo client. Whenever you have a protocol that listens on plain-text TCP it is easy to run it over TLS instead.
It specifies that it only wants to talk to a host named "example.com", and that it trusts the certificate authority in
"public.pem" to say who "example.com" is. Note that the host you are connecting to — localhost — and

122 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorSSL.listenSSL.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.endpoints.SSL4ClientEndpoint.html

Twisted Documentation, Release 16.0.0

the host whose identity you are verifying — example.com — can differ. In this case, our example server.pem
certificate identifies a host named “example.com”, but your server is proably running on localhost.

In a realistic client, it’s very important that you pass the same “hostname” your connection API (in this case,
SSL4ClientEndpoint) and optionsForClientTLS. In this case we’re using “localhost” as the host to connect to
because you’re probably running this example on your own computer and “example.com” because that’s the value
hard-coded in the dummy certificate distributed along with Twisted’s example code.

Connecting To Public Servers

Here is a short example, now using the default trust roots for optionsForClientTLS from platformTrust.

check_server_certificate.py

from __future__ import print_function
import sys
from twisted.internet import defer, endpoints, protocol, ssl, task, error

def main(reactor, host, port=443):
options = ssl.optionsForClientTLS(hostname=host.decode('utf-8'))
port = int(port)

class ShowCertificate(protocol.Protocol):
def connectionMade(self):

self.transport.write(b"GET / HTTP/1.0\r\n\r\n")
self.done = defer.Deferred()

def dataReceived(self, data):
certificate = ssl.Certificate(self.transport.getPeerCertificate())
print("OK:", certificate)
self.transport.abortConnection()

def connectionLost(self, reason):
print("Lost.")
if not reason.check(error.ConnectionClosed):

print("BAD:", reason.value)
self.done.callback(None)

return endpoints.connectProtocol(
endpoints.SSL4ClientEndpoint(reactor, host, port, options),
ShowCertificate()

).addCallback(lambda protocol: protocol.done)

task.react(main, sys.argv[1:])

You can use this tool fairly simply to retrieve certificates from an HTTPS server with a valid TLS certificate, by
running it with a host name. For example:

$ python check_server_certificate.py www.twistedmatrix.com
OK: <Certificate Subject=www.twistedmatrix.com ...>
$ python check_server_certificate.py www.cacert.org
BAD: [(... 'certificate verify failed')]
$ python check_server_certificate.py dornkirk.twistedmatrix.com
BAD: No service reference ID could be validated against certificate.

Note: To properly validate your hostname parameter according to RFC6125, please also install the “ser-
vice_identity” and “idna” packages from PyPI. Without this package, Twisted will currently make a conservative
guess as to the correctness of the server’s certificate, but this will reject a large number of potentially valid certificates.

2.1. Developer Guides 123

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.endpoints.SSL4ClientEndpoint.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.ssl.optionsForClientTLS.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.ssl.optionsForClientTLS.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.ssl.platformTrust.html
https://pypi.python.org/pypi/service_identity
https://pypi.python.org/pypi/service_identity
https://pypi.python.org/pypi/idna

Twisted Documentation, Release 16.0.0

service_identity implements the standard correctly and it will be a required dependency for TLS in a future release of
Twisted.

Using startTLS

If you want to switch from unencrypted to encrypted traffic mid-connection, you’ll need to turn on TLS with startTLS
on both ends of the connection at the same time via some agreed-upon signal like the reception of a particular message.
You can readily verify the switch to an encrypted channel by examining the packet payloads with a tool like Wireshark
.

startTLS server

starttls_server.py

from twisted.internet import ssl, protocol, defer, task, endpoints
from twisted.protocols.basic import LineReceiver
from twisted.python.modules import getModule

class TLSServer(LineReceiver):
def lineReceived(self, line):

print("received: " + line)
if line == "STARTTLS":

print("-- Switching to TLS")
self.sendLine('READY')
self.transport.startTLS(self.factory.options)

def main(reactor):
certData = getModule(__name__).filePath.sibling('server.pem').getContent()
cert = ssl.PrivateCertificate.loadPEM(certData)
factory = protocol.Factory.forProtocol(TLSServer)
factory.options = cert.options()
endpoint = endpoints.TCP4ServerEndpoint(reactor, 8000)
endpoint.listen(factory)
return defer.Deferred()

if __name__ == '__main__':
import starttls_server
task.react(starttls_server.main)

startTLS client

starttls_client.py

from twisted.internet import ssl, endpoints, task, protocol, defer
from twisted.protocols.basic import LineReceiver
from twisted.python.modules import getModule

class StartTLSClient(LineReceiver):
def connectionMade(self):

self.sendLine("plain text")
self.sendLine("STARTTLS")

def lineReceived(self, line):

124 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.ITLSTransport.startTLS.html
http://www.wireshark.org/

Twisted Documentation, Release 16.0.0

print("received: " + line)
if line == "READY":

self.transport.startTLS(self.factory.options)
self.sendLine("secure text")
self.transport.loseConnection()

@defer.inlineCallbacks
def main(reactor):

factory = protocol.Factory.forProtocol(StartTLSClient)
certData = getModule(__name__).filePath.sibling('server.pem').getContent()
factory.options = ssl.optionsForClientTLS(

u"example.com", ssl.PrivateCertificate.loadPEM(certData)
)
endpoint = endpoints.HostnameEndpoint(reactor, 'localhost', 8000)
startTLSClient = yield endpoint.connect(factory)

done = defer.Deferred()
startTLSClient.connectionLost = lambda reason: done.callback(None)
yield done

if __name__ == "__main__":
import starttls_client
task.react(starttls_client.main)

startTLS is a transport method that gets passed a contextFactory. It is invoked at an agreed-upon time in the
data reception method of the client and server protocols. The server uses PrivateCertificate.options to
create a contextFactory which will use a particular certificate and private key (a common requirement for TLS
servers).

The client creates an uncustomized CertificateOptions which is all that’s necessary for a TLS client to interact
with a TLS server.

Client authentication

Server and client-side changes to require client authentication fall largely under the dominion of pyOpenSSL, but few
examples seem to exist on the web so for completeness a sample server and client are provided here.

TLS server with client authentication via client certificate verification

When one or more certificates are passed to PrivateCertificate.options, the resulting contextFactory
will use those certificates as trusted authorities and require that the peer present a certificate with a valid chain anchored
by one of those authorities.

A server can use this to verify that a client provides a valid certificate signed by one of those certificate authorities;
here is an example of such a certificate.

ssl_clientauth_server.py

#!/usr/bin/env python
Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

import sys

from twisted.internet import ssl, protocol, task, defer
from twisted.python import log

2.1. Developer Guides 125

Twisted Documentation, Release 16.0.0

from twisted.python.modules import getModule

import echoserv

def main(reactor):
log.startLogging(sys.stdout)
certData = getModule(__name__).filePath.sibling('public.pem').getContent()
authData = getModule(__name__).filePath.sibling('server.pem').getContent()
authority = ssl.Certificate.loadPEM(certData)
certificate = ssl.PrivateCertificate.loadPEM(authData)
factory = protocol.Factory.forProtocol(echoserv.Echo)
reactor.listenSSL(8000, factory, certificate.options(authority))
return defer.Deferred()

if __name__ == '__main__':
import ssl_clientauth_server
task.react(ssl_clientauth_server.main)

Client with certificates

The following client then supplies such a certificate as the clientCertificate argument to optionsForClientTLS,
while still validating the server’s identity.

ssl_clientauth_client.py

#!/usr/bin/env python
Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

from twisted.internet import ssl, task, protocol, endpoints, defer
from twisted.python.modules import getModule

import echoclient

@defer.inlineCallbacks
def main(reactor):

factory = protocol.Factory.forProtocol(echoclient.EchoClient)
certData = getModule(__name__).filePath.sibling('public.pem').getContent()
authData = getModule(__name__).filePath.sibling('server.pem').getContent()
clientCertificate = ssl.PrivateCertificate.loadPEM(authData)
authority = ssl.Certificate.loadPEM(certData)
options = ssl.optionsForClientTLS(u'example.com', authority,

clientCertificate)
endpoint = endpoints.SSL4ClientEndpoint(reactor, 'localhost', 8000,

options)
echoClient = yield endpoint.connect(factory)

done = defer.Deferred()
echoClient.connectionLost = lambda reason: done.callback(None)
yield done

if __name__ == '__main__':
import ssl_clientauth_client
task.react(ssl_clientauth_client.main)

Notice that these two examples are very, very similar to the TLS echo examples above. In fact, you can demonstrate a
failed authentication by simply running echoclient_ssl.py against ssl_clientauth_server.py; you’ll

126 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.ssl.optionsForClientTLS.html

Twisted Documentation, Release 16.0.0

see no output because the server closed the connection rather than echoing the client’s authenticated input.

TLS Protocol Options

For servers, it is desirable to offer Diffie-Hellman based key exchange that provides perfect forward secrecy.
The ciphers are activated by default, however it is necessary to pass an instance of DiffieHellmanParameters to
CertificateOptions via the dhParameters option to be able to use them.

For example,

from twisted.internet.ssl import CertificateOptions, DiffieHellmanParameters
from twisted.python.filepath import FilePath
dhFilePath = FilePath('dh_param_1024.pem')
dhParams = DiffieHellmanParameters.fromFile(dhFilePath)
options = CertificateOptions(..., dhParameters=dhParams)

Another part of the TLS protocol which CertificateOptions can control is the version of the TLS or SSL
protocol used. This is often called the context’s “method”. By default, CertificateOptions creates con-
texts that require at least the TLSv1 protocol. CertificateOptions also supports the older SSLv3 protocol
(which may be required interoperate with an existing service or piece of software). To allow SSLv3, just pass
OpenSSL.SSL.SSLv3_METHOD to CertificateOptions‘s initializer:

from twisted.internet.ssl import CertificateOptions
from OpenSSL.SSL import SSLv3_METHOD
options = CertificateOptions(..., method=SSLv3_METHOD)

The somewhat confusingly-named OpenSSL.SSL.SSLv23_METHOD is also supported (to enable SSLv3 or better,
based on negotiation). SSLv2 is insecure; it is explicitly not supported and will be disabled in all configurations.

Additionally, it is possible to limit the acceptable ciphers for your connection by passing an IAcceptableCiphers object
to CertificateOptions. Since Twisted uses a secure cipher configuration by default, it is discouraged to do so
unless absolutely necessary.

Application Layer Protocol Negotiation (ALPN) and Next Protocol Negotiation (NPN)

ALPN and NPN are TLS extensions that can be used by clients and servers to negotiate what application-layer protocol
will be spoken once the encrypted connection is established. This avoids the need for extra custom round trips once
the encrypted connection is established. It is implemented as a standard part of the TLS handshake.

NPN is supported from OpenSSL version 1.0.1. ALPN is the newer of the two protocols, supported in OpenSSL
versions 1.0.2 onward. These functions require pyOpenSSL version 0.15 or higher. To query the methods supported
by your system, use twisted.internet.ssl.protocolNegotiationMechanisms. It will return a collection of flags indicating
support for NPN and/or ALPN.

twisted.internet.ssl.CertificateOptions and twisted.internet.ssl.optionsForClientTLS allow for selecting the protocols
your program is willing to speak after the connection is established.

On the server=side you will have:

from twisted.internet.ssl import CertificateOptions
options = CertificateOptions(..., acceptableProtocols=[b'h2', b'http/1.1'])

and for clients:

from twisted.internet.ssl import optionsForClientTLS
options = optionsForClientTLS(hostname=hostname, acceptableProtocols=[b'h2', b'http/1.1'])

2.1. Developer Guides 127

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.ssl.DiffieHellmanParameters.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IAcceptableCiphers.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.ssl.protocolNegotiationMechanisms.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.ssl.CertificateOptions.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.ssl.optionsForClientTLS.html

Twisted Documentation, Release 16.0.0

Twisted will attempt to use both ALPN and NPN, if they’re available, to maximise compatibility with peers. If both
ALPN and NPN are supported by the peer, the result from ALPN is preferred.

For NPN, the client selects the protocol to use; For ALPN, the server does. If Twisted is acting as the peer who is
supposed to select the protocol, it will prefer the earliest protocol in the list that is supported by both peers.

To determine what protocol was negotiated, after the connection is done, use TLSMemoryBIOProto-
col.negotiatedProtocol. It will return one of the protocol names passed to the acceptableProtocols parameter.
It will return None if the peer did not offer ALPN or NPN.

It can also return None if no overlap could be found and the connection was established regardless (some peers will
do this: Twisted will not). In this case, the protocol that should be used is whatever protocol would have been used if
negotiation had not been attempted at all.

Warning: If ALPN or NPN are used and no overlap can be found, then the remote peer may choose to terminate
the connection. This may cause the TLS handshake to fail, or may result in the connection being torn down
immediately after being made. If Twisted is the selecting peer (that is, Twisted is the server and ALPN is being
used, or Twisted is the client and NPN is being used), and no overlap can be found, Twisted will always choose to
fail the handshake rather than allow an ambiguous connection to set up.

An example of using this functionality can be found in this example script for clients and this
example script for servers.

Related facilities

twisted.protocols.amp supports encrypted connections and exposes a startTLS method one can use or subclass.
twisted.web has built-in TLS support in its client , http , and xmlrpc modules.

Conclusion

After reading through this tutorial, you should be able to:

• Use listenSSL and connectSSL to create servers and clients that use TLS

• Use startTLS to switch a channel from being unencrypted to using TLS mid-connection

• Add server and client support for client authentication

2.1.11 UDP Networking

Overview

Unlike TCP, UDP has no notion of connections. A UDP socket can receive datagrams from any server on the network
and send datagrams to any host on the network. In addition, datagrams may arrive in any order, never arrive at all, or
be duplicated in transit.

Since there are no connections, we only use a single object, a protocol, for each UDP socket. We then use the reactor
to connect this protocol to a UDP transport, using the twisted.internet.interfaces.IReactorUDP reactor API.

DatagramProtocol

The class where you actually implement the protocol parsing and handling will usually be descended from
twisted.internet.protocol.DatagramProtocol or from one of its convenience children. The DatagramProtocol class

128 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.protocols.tls.TLSMemoryBIOProtocol.negotiatedProtocol.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.protocols.tls.TLSMemoryBIOProtocol.negotiatedProtocol.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.protocols.amp.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.client.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.http.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.xmlrpc.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorUDP.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.protocol.DatagramProtocol.html

Twisted Documentation, Release 16.0.0

receives datagrams and can send them out over the network. Received datagrams include the address they were sent
from. When sending datagrams the destination address must be specified.

Here is a simple example:

from twisted.internet.protocol import DatagramProtocol
from twisted.internet import reactor

class Echo(DatagramProtocol):

def datagramReceived(self, data, (host, port)):
print "received %r from %s:%d" % (data, host, port)
self.transport.write(data, (host, port))

reactor.listenUDP(9999, Echo())
reactor.run()

As you can see, the protocol is registered with the reactor. This means it may be persisted if it’s added to an appli-
cation, and thus it has startProtocol and stopProtocol methods that will get called when the protocol is connected and
disconnected from a UDP socket.

The protocol’s transport attribute will implement the twisted.internet.interfaces.IUDPTransport interface. No-
tice that the host argument should be an IP address, not a hostname. If you only have the hostname use
reactor.resolve() to resolve the address (see twisted.internet.interfaces.IReactorCore.resolve).

Adopted Datagram Ports

It is also possible to add an existing SOCK_DGRAM file descriptor to the reactor using the adoptDatagramPort API.

Here is a simple example:

adopt_datagram_port.py

import socket

from twisted.internet.protocol import DatagramProtocol
from twisted.internet import reactor

class Echo(DatagramProtocol):
def datagramReceived(self, data, (host, port)):

print "received %r from %s:%d" % (data, host, port)
self.transport.write(data, (host, port))

portSocket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
Make the port non-blocking and start it listening.
portSocket.setblocking(False)
portSocket.bind(('127.0.0.1', 9999))

Now pass the port file descriptor to the reactor
port = reactor.adoptDatagramPort(

portSocket.fileno(), socket.AF_INET, Echo())

The portSocket should be cleaned up by the process that creates it.
portSocket.close()

2.1. Developer Guides 129

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.protocol.AbstractDatagramProtocol.startProtocol.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.protocol.AbstractDatagramProtocol.stopProtocol.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IUDPTransport.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorCore.resolve.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorSocket.adoptDatagramPort.html

Twisted Documentation, Release 16.0.0

reactor.run()

Note:

• You must ensure that the socket is non-blocking before passing its file descriptor to adoptDatagramPort.

• adoptDatagramPort cannot (currently) detect the family of the adopted socket so you must ensure that you pass
the correct socket family argument.

• The reactor will not shutdown the socket. It is the responsibility of the process that created the socket to
shutdown and clean up the socket when it is no longer needed.

Connected UDP

A connected UDP socket is slightly different from a standard one as it can only send and receive datagrams to/from a
single address. However this does not in any way imply a connection as datagrams may still arrive in any order and
the port on the other side may have no one listening. The benefit of the connected UDP socket is that it may provide
notification of undelivered packages. This depends on many factors (almost all of which are out of the control of the
application) but still presents certain benefits which occasionally make it useful.

Unlike a regular UDP protocol, we do not need to specify where to send datagrams and are not told where they came
from since they can only come from the address to which the socket is ‘connected’.

from twisted.internet.protocol import DatagramProtocol
from twisted.internet import reactor

class Helloer(DatagramProtocol):

def startProtocol(self):
host = "192.168.1.1"
port = 1234

self.transport.connect(host, port)
print "now we can only send to host %s port %d" % (host, port)
self.transport.write("hello") # no need for address

def datagramReceived(self, data, (host, port)):
print "received %r from %s:%d" % (data, host, port)

Possibly invoked if there is no server listening on the
address to which we are sending.
def connectionRefused(self):

print "No one listening"

0 means any port, we don't care in this case
reactor.listenUDP(0, Helloer())
reactor.run()

Note that connect(), like write() will only accept IP addresses, not unresolved hostnames. To obtain the IP of
a hostname use reactor.resolve() , e.g.:

from twisted.internet import reactor

def gotIP(ip):
print "IP of 'example.com' is", ip
reactor.callLater(3, reactor.stop)

130 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorSocket. adoptDatagramPort.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorSocket. adoptDatagramPort.html
https://twistedmatrix.com/trac/ticket/5599

Twisted Documentation, Release 16.0.0

reactor.resolve('example.com').addCallback(gotIP)
reactor.run()

Connecting to a new address after a previous connection or making a connected port unconnected are not currently
supported, but likely will be in the future.

Multicast UDP

Multicast allows a process to contact multiple hosts with a single packet, without knowing the specific IP address of
any of the hosts. This is in contrast to normal, or unicast, UDP, where each datagram has a single IP as its destination.
Multicast datagrams are sent to special multicast group addresses (in the IPv4 range 224.0.0.0 to 239.255.255.255),
along with a corresponding port. In order to receive multicast datagrams, you must join that specific group address.
However, any UDP socket can send to multicast addresses.

MulticastServer.py

from twisted.internet.protocol import DatagramProtocol
from twisted.internet import reactor

class MulticastPingPong(DatagramProtocol):

def startProtocol(self):
"""
Called after protocol has started listening.
"""
Set the TTL>1 so multicast will cross router hops:
self.transport.setTTL(5)
Join a specific multicast group:
self.transport.joinGroup("228.0.0.5")

def datagramReceived(self, datagram, address):
print "Datagram %s received from %s" % (repr(datagram), repr(address))
if datagram == "Client: Ping":

Rather than replying to the group multicast address, we send the
reply directly (unicast) to the originating port:
self.transport.write("Server: Pong", address)

We use listenMultiple=True so that we can run MulticastServer.py and
MulticastClient.py on same machine:
reactor.listenMulticast(8005, MulticastPingPong(),

listenMultiple=True)
reactor.run()

As with UDP, with multicast there is no server/client differentiation at the protocol level. Our server example is very
simple and closely resembles a normal listenUDP protocol implementation. The main difference is that instead of
listenUDP, listenMulticast is called with the port number. The server calls joinGroup to join a multicast group. A
DatagramProtocol that is listening with multicast and has joined a group can receive multicast datagrams, but
also unicast datagrams sent directly to its address. The server in the example above sends such a unicast message in
reply to the multicast message it receives from the client.

MulticastClient.py

from twisted.internet.protocol import DatagramProtocol
from twisted.internet import reactor

2.1. Developer Guides 131

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorUDP.listenUDP.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorMulticast.listenMulticast.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IMulticastTransport.joinGroup.html

Twisted Documentation, Release 16.0.0

class MulticastPingClient(DatagramProtocol):

def startProtocol(self):
Join the multicast address, so we can receive replies:
self.transport.joinGroup("228.0.0.5")
Send to 228.0.0.5:8005 - all listeners on the multicast address
(including us) will receive this message.
self.transport.write('Client: Ping', ("228.0.0.5", 8005))

def datagramReceived(self, datagram, address):
print "Datagram %s received from %s" % (repr(datagram), repr(address))

reactor.listenMulticast(8005, MulticastPingClient(), listenMultiple=True)
reactor.run()

Note that a multicast socket will have a default TTL (time to live) of 1. That is, datagrams won’t traverse more than one
router hop, unless a higher TTL is set with setTTL. Other functionality provided by the multicast transport includes
setOutgoingInterface and setLoopbackMode – see IMulticastTransport for more information.

Broadcast UDP

Broadcast allows a different way of contacting several unknown hosts. Broadcasting via UDP sends a packet out to all
hosts on the local network by sending to a magic broadcast address ("<broadcast>"). This broadcast is filtered by
routers by default, and there are no “groups” like multicast, only different ports.

Broadcast is enabled by passing True to setBroadcastAllowed on the port. Checking the broadcast status can be done
with getBroadcastAllowed on the port.

For a complete example of this feature, see udpbroadcast.py.

IPv6

UDP sockets can also bind to IPv6 addresses to support sending and receiving datagrams over IPv6. By passing an
IPv6 address to listenUDP‘s interface argument, the reactor will start an IPv6 socket that can be used to send and
receive UDP datagrams.

ipv6_listen.py

from twisted.internet.protocol import DatagramProtocol
from twisted.internet import reactor

class Echo(DatagramProtocol):
def datagramReceived(self, data, addr):

print "received %r from %s" % (data, addr)
self.transport.write(data, addr)

reactor.listenUDP(8006, Echo(), interface='::')
reactor.run()

132 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IMulticastTransport.setTTL.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IMulticastTransport.setOutgoingInterface.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IMulticastTransport.setLoopbackMode.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IMulticastTransport.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IUDPTransport.setBroadcastAllowed.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IUDPTransport.getBroadcastAllowed.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorUDP.listenUDP.html

Twisted Documentation, Release 16.0.0

2.1.12 Using Processes

Overview

Along with connection to servers across the internet, Twisted also connects to local processes with much the same
API. The API is described in more detail in the documentation of:

• twisted.internet.interfaces.IReactorProcess

• twisted.internet.interfaces.IProcessTransport

• twisted.internet.interfaces.IProcessProtocol

Running Another Process

Processes are run through the reactor, using reactor.spawnProcess . Pipes are created to the child process,
and added to the reactor core so that the application will not block while sending data into or pulling data out of the
new process. reactor.spawnProcess requires two arguments, processProtocol and executable , and
optionally takes several more: args , environment , path , userID , groupID , usePTY , and childFDs .
Not all of these are available on Windows.

from twisted.internet import reactor

processProtocol = MyProcessProtocol()
reactor.spawnProcess(processProtocol, executable, args=[program, arg1, arg2],

env={'HOME': os.environ['HOME']}, path,
uid, gid, usePTY, childFDs)

• processProtocol should be an instance of a subclass of twisted.internet.protocol.ProcessProtocol . The
interface is described below.

• executable is the full path of the program to run. It will be connected to processProtocol.

• args is a list of command line arguments to be passed to the process. args[0] should be the name of the
process.

• env is a dictionary containing the environment to pass through to the process.

• path is the directory to run the process in. The child will switch to the given directory just before starting the
new program. The default is to stay in the current directory.

• uid and gid are the user ID and group ID to run the subprocess as. Of course, changing identities will be more
likely to succeed if you start as root.

• usePTY specifies whether the child process should be run with a pty, or if it should just get a pair of pipes.
Whether a program needs to be run with a PTY or not depends on the particulars of that program. Often,
programs which primarily interact with users via a terminal do need a PTY.

• childFDs lets you specify how the child’s file descriptors should be set up. Each key is a file descriptor
number (an integer) as seen by the child. 0, 1, and 2 are usually stdin, stdout, and stderr, but some programs
may be instructed to use additional fds through command-line arguments or environment variables. Each value
is either an integer specifying one of the parent’s current file descriptors, the string “r” which creates a pipe that
the parent can read from, or the string “w” which creates a pipe that the parent can write to. If childFDs is
not provided, a default is used which creates the usual stdin-writer, stdout-reader, and stderr-reader pipes.

args and env have empty default values, but many programs depend upon them to be set correctly. At the very least,
args[0] should probably be the same as executable . If you just provide os.environ for env , the child
program will inherit the environment from the current process, which is usually the civilized thing to do (unless you
want to explicitly clean the environment as a security precaution). The default is to give an empty env to the child.

2.1. Developer Guides 133

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorProcess.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IProcessTransport.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IProcessProtocol.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.protocol.ProcessProtocol.html

Twisted Documentation, Release 16.0.0

reactor.spawnProcess returns an instance that implements IProcessTransport.

Writing a ProcessProtocol

The ProcessProtocol you pass to spawnProcess is your interaction with the process. It has a very similar signature
to a regular Protocol, but it has several extra methods to deal with events specific to a process. In our example, we will
interface with ‘wc’ to create a word count of user-given text. First, we’ll start by importing the required modules, and
writing the initialization for our ProcessProtocol.

from twisted.internet import protocol
class WCProcessProtocol(protocol.ProcessProtocol):

def __init__(self, text):
self.text = text

When the ProcessProtocol is connected to the protocol, it has the connectionMade method called. In our protocol, we
will write our text to the standard input of our process and then close standard input, to let the process know we are
done writing to it.
...

def connectionMade(self):
self.transport.write(self.text)
self.transport.closeStdin()

At this point, the process has received the data, and it’s time for us to read the results. Instead of being received in
dataReceived , data from standard output is received in outReceived . This is to distinguish it from data on
standard error.
...

def outReceived(self, data):
fieldLength = len(data) / 3
lines = int(data[:fieldLength])
words = int(data[fieldLength:fieldLength*2])
chars = int(data[fieldLength*2:])
self.transport.loseConnection()
self.receiveCounts(lines, words, chars)

Now, the process has parsed the output, and ended the connection to the process. Then it sends the results on to the
final method, receiveCounts. This is for users of the class to override, so as to do other things with the data. For our
demonstration, we will just print the results.
...

def receiveCounts(self, lines, words, chars):
print 'Received counts from wc.'
print 'Lines:', lines
print 'Words:', words
print 'Characters:', chars

We’re done! To use our WCProcessProtocol, we create an instance, and pass it to spawnProcess.

from twisted.internet import reactor
wcProcess = WCProcessProtocol("accessing protocols through Twisted is fun!\n")
reactor.spawnProcess(wcProcess, 'wc', ['wc'])
reactor.run()

Things that can happen to your ProcessProtocol

These are the methods that you can usefully override in your subclass of ProcessProtocol :

134 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IProcessTransport.html

Twisted Documentation, Release 16.0.0

• .connectionMade() : This is called when the program is started, and makes a good place to write data into
the stdin pipe (using self.transport.write).

• .outReceived(data) : This is called with data that was received from the process’ stdout pipe. Pipes tend
to provide data in larger chunks than sockets (one kilobyte is a common buffer size), so you may not experience
the “random dribs and drabs” behavior typical of network sockets, but regardless you should be prepared to deal
if you don’t get all your data in a single call. To do it properly, outReceived ought to simply accumulate the
data and put off doing anything with it until the process has finished.

• .errReceived(data) : This is called with data from the process’ stderr pipe. It behaves just like
outReceived .

• .inConnectionLost : This is called when the reactor notices that the process’ stdin pipe has closed. Pro-
grams don’t typically close their own stdin, so this will probably get called when your ProcessProtocol has shut
down the write side with self.transport.loseConnection .

• .outConnectionLost : This is called when the program closes its stdout pipe. This usually happens when
the program terminates.

• .errConnectionLost : Same as outConnectionLost , but for stderr instead of stdout.

• .processExited(status) : This is called when the child process has been reaped, and receives informa-
tion about the process’ exit status. The status is passed in the form of a Failure instance, created with a .value
that either holds a ProcessDone object if the process terminated normally (it died of natural causes instead of
receiving a signal, and if the exit code was 0), or a ProcessTerminated object (with an .exitCode attribute) if
something went wrong.

• .processEnded(status) : This is called when all the file descriptors associated with the child process
have been closed and the process has been reaped. This means it is the last callback which will be made onto a
ProcessProtocol . The status parameter has the same meaning as it does for processExited .

The base-class definitions of most of these functions are no-ops. This will result in all stdout and stderr being thrown
away. Note that it is important for data you don’t care about to be thrown away: if the pipe were not read, the child
process would eventually block as it tried to write to a full pipe.

Things you can do from your ProcessProtocol

The following are the basic ways to control the child process:

• self.transport.write(data) : Stuff some data in the stdin pipe. Note that this write method will
queue any data that can’t be written immediately. Writing will resume in the future when the pipe becomes
writable again.

• self.transport.closeStdin : Close the stdin pipe. Programs which act as filters (reading from stdin,
modifying the data, writing to stdout) usually take this as a sign that they should finish their job and terminate.
For these programs, it is important to close stdin when you’re done with it, otherwise the child process will
never quit.

• self.transport.closeStdout : Not usually called, since you’re putting the process into a state where
any attempt to write to stdout will cause a SIGPIPE error. This isn’t a nice thing to do to the poor process.

• self.transport.closeStderr : Not usually called, same reason as closeStdout .

• self.transport.loseConnection : Close all three pipes.

• self.transport.signalProcess(’KILL’) : Kill the child process. This will eventually result in
processEnded being called.

2.1. Developer Guides 135

https://twistedmatrix.com/documents/16.0.0/api/twisted.python.failure.Failure.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.error.ProcessDone.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.error.ProcessTerminated.html

Twisted Documentation, Release 16.0.0

Verbose Example

Here is an example that is rather verbose about exactly when all the methods are called. It writes a number of lines
into the wc program and then parses the output.

process.py

#!/usr/bin/env python

Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

from twisted.internet import protocol
from twisted.internet import reactor
import re

class MyPP(protocol.ProcessProtocol):
def __init__(self, verses):

self.verses = verses
self.data = ""

def connectionMade(self):
print "connectionMade!"
for i in range(self.verses):

self.transport.write("Aleph-null bottles of beer on the wall,\n" +
"Aleph-null bottles of beer,\n" +
"Take one down and pass it around,\n" +
"Aleph-null bottles of beer on the wall.\n")

self.transport.closeStdin() # tell them we're done
def outReceived(self, data):

print "outReceived! with %d bytes!" % len(data)
self.data = self.data + data

def errReceived(self, data):
print "errReceived! with %d bytes!" % len(data)

def inConnectionLost(self):
print "inConnectionLost! stdin is closed! (we probably did it)"

def outConnectionLost(self):
print "outConnectionLost! The child closed their stdout!"
now is the time to examine what they wrote
#print "I saw them write:", self.data
(dummy, lines, words, chars, file) = re.split(r'\s+', self.data)
print "I saw %s lines" % lines

def errConnectionLost(self):
print "errConnectionLost! The child closed their stderr."

def processExited(self, reason):
print "processExited, status %d" % (reason.value.exitCode,)

def processEnded(self, reason):
print "processEnded, status %d" % (reason.value.exitCode,)
print "quitting"
reactor.stop()

pp = MyPP(10)
reactor.spawnProcess(pp, "wc", ["wc"], {})
reactor.run()

The exact output of this program depends upon the relative timing of some un-synchronized events. In particular, the
program may observe the child process close its stderr pipe before or after it reads data from the stdout pipe. One
possible transcript would look like this:

136 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

% ./process.py
connectionMade!
inConnectionLost! stdin is closed! (we probably did it)
errConnectionLost! The child closed their stderr.
outReceived! with 24 bytes!
outConnectionLost! The child closed their stdout!
I saw 40 lines
processEnded, status 0
quitting
Main loop terminated.
%

Doing it the Easy Way

Frequently, one just needs a simple way to get all the output from a program. In the blocking world, you might use
commands.getoutput from the standard library, but using that in an event-driven program will cause everything
else to stall until the command finishes. (in addition, the SIGCHLD handler used by that function does not play well
with Twisted’s own signal handling). For these cases, the twisted.internet.utils.getProcessOutput function can be used.
Here is a simple example:

quotes.py

from twisted.internet import protocol, utils, reactor
from twisted.python import failure
from cStringIO import StringIO

class FortuneQuoter(protocol.Protocol):

fortune = '/usr/games/fortune'

def connectionMade(self):
output = utils.getProcessOutput(self.fortune)
output.addCallbacks(self.writeResponse, self.noResponse)

def writeResponse(self, resp):
self.transport.write(resp)
self.transport.loseConnection()

def noResponse(self, err):
self.transport.loseConnection()

if __name__ == '__main__':
f = protocol.Factory()
f.protocol = FortuneQuoter
reactor.listenTCP(10999, f)
reactor.run()

If you only need the final exit code (like commands.getstatusoutput(cmd)[0]), the
twisted.internet.utils.getProcessValue function is useful. Here is an example:

trueandfalse.py

from twisted.internet import utils, reactor

def printTrueValue(val):
print "/bin/true exits with rc=%d" % val
output = utils.getProcessValue('/bin/false')

2.1. Developer Guides 137

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.utils.getProcessOutput.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.utils.getProcessValue.html

Twisted Documentation, Release 16.0.0

output.addCallback(printFalseValue)

def printFalseValue(val):
print "/bin/false exits with rc=%d" % val
reactor.stop()

output = utils.getProcessValue('/bin/true')
output.addCallback(printTrueValue)
reactor.run()

Mapping File Descriptors

“stdin” , “stdout” , and “stderr” are just conventions. Programs which operate as filters generally accept input on fd0,
write their output on fd1, and emit error messages on fd2. This is common enough that the standard C library provides
macros like “stdin” to mean fd0, and shells interpret the pipe character “|” to mean “redirect fd1 from one command
into fd0 of the next command” .

But these are just conventions, and programs are free to use additional file descriptors or even ignore the standard three
entirely. The”childFDs” argument allows you to specify exactly what kind of files descriptors the child process should
be given.

Each child FD can be put into one of three states:

• Mapped to a parent FD: this causes the child’s reads and writes to come from or go to the same source/destination
as the parent.

• Feeding into a pipe which can be read by the parent.

• Feeding from a pipe which the parent writes into.

Mapping the child FDs to the parent’s is very commonly used to send the child’s stderr output to the same place as the
parent’s. When you run a program from the shell, it will typically leave fds 0, 1, and 2 mapped to the shell’s 0, 1, and
2, allowing you to see the child program’s output on the same terminal you used to launch the child. Likewise, inetd
will typically map both stdin and stdout to the network socket, and may map stderr to the same socket or to some kind
of logging mechanism. This allows the child program to be implemented with no knowledge of the network: it merely
speaks its protocol by doing reads on fd0 and writes on fd1.

Feeding into a parent’s read pipe is used to gather output from the child, and is by far the most common way of
interacting with child processes.

Feeding from a parent’s write pipe allows the parent to control the child. Programs like “bc” or “ftp” can be controlled
this way, by writing commands into their stdin stream.

The “childFDs” dictionary maps file descriptor numbers (as will be seen by the child process) to one of these three
states. To map the fd to one of the parent’s fds, simply provide the fd number as the value. To map it to a read pipe,
use the string “r” as the value. To map it to a write pipe, use the string “w” .

For example, the default mapping sets up the standard stdin/stdout/stderr pipes. It is implemented with the following
dictionary:

childFDs = { 0: "w", 1: "r", 2: "r" }

To launch a process which reads and writes to the same places that the parent python program does, use this:

childFDs = { 0: 0, 1: 1, 2: 2}

To write into an additional fd (say it is fd number 4), use this:

childFDs = { 0: "w", 1: "r", 2: "r" , 4: "w"}

138 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

ProcessProtocols with extra file descriptors

When you provide a “childFDs” dictionary with more than the normal three fds, you need additional methods to
access those pipes. These methods are more generalized than the .outReceived ones described above. In fact,
those methods (outReceived and errReceived) are actually just wrappers left in for compatibility with older
code, written before this generalized fd mapping was implemented. The new list of things that can happen to your
ProcessProtocol is as follows:

• .connectionMade : This is called when the program is started.

• .childDataReceived(childFD, data) : This is called with data that was received from one of the
process’ output pipes (i.e. where the childFDs value was “r” . The actual file number (from the point of view of
the child process) is in “childFD” . For compatibility, the default implementation of .childDataReceived
dispatches to .outReceived or .errReceived when “childFD” is 1 or 2.

• .childConnectionLost(childFD) : This is called when the reactor notices that one of the process’
pipes has been closed. This either means you have just closed down the parent’s end of the pipe (with
.transport.closeChildFD), the child closed the pipe explicitly (sometimes to indicate EOF), or the
child process has terminated and the kernel has closed all of its pipes. The “childFD” argument tells you
which pipe was closed. Note that you can only find out about file descriptors which were mapped to pipes:
when they are mapped to existing fds the parent has no way to notice when they’ve been closed. For com-
patibility, the default implementation dispatches to .inConnectionLost , .outConnectionLost , or
.errConnectionLost .

• .processEnded(status) : This is called when the child process has been reaped, and all pipes have been
closed. This insures that all data written by the child prior to its death will be received before .processEnded
is invoked.

In addition to those methods, there are other methods available to influence the child process:

• self.transport.writeToChild(childFD, data) : Stuff some data into an input pipe. .write
simply writes to childFD=0.

• self.transport.closeChildFD(childFD) : Close one of the child’s pipes. Closing an input pipe is
a common way to indicate EOF to the child process. Closing an output pipe is neither very friendly nor very
useful.

Examples

GnuPG, the encryption program, can use additional file descriptors to accept a passphrase and emit status output.
These are distinct from stdin (used to accept the crypttext), stdout (used to emit the plaintext), and stderr (used to emit
human-readable status/warning messages). The passphrase FD reads until the pipe is closed and uses the resulting
string to unlock the secret key that performs the actual decryption. The status FD emits machine-parseable status
messages to indicate the validity of the signature, which key the message was encrypted to, etc.

gpg accepts command-line arguments to specify what these fds are, and then assumes that they have been opened by
the parent before the gpg process is started. It simply performs reads and writes to these fd numbers.

To invoke gpg in decryption/verification mode, you would do something like the following:

class GPGProtocol(ProcessProtocol):
def __init__(self, crypttext):

self.crypttext = crypttext
self.plaintext = ""
self.status = ""

def connectionMade(self):
self.transport.writeToChild(3, self.passphrase)
self.transport.closeChildFD(3)

2.1. Developer Guides 139

Twisted Documentation, Release 16.0.0

self.transport.writeToChild(0, self.crypttext)
self.transport.closeChildFD(0)

def childDataReceived(self, childFD, data):
if childFD == 1: self.plaintext += data
if childFD == 4: self.status += data

def processEnded(self, status):
rc = status.value.exitCode
if rc == 0:

self.deferred.callback(self)
else:

self.deferred.errback(rc)

def decrypt(crypttext):
gp = GPGProtocol(crypttext)
gp.deferred = Deferred()
cmd = ["gpg", "--decrypt", "--passphrase-fd", "3", "--status-fd", "4",

"--batch"]
p = reactor.spawnProcess(gp, cmd[0], cmd, env=None,

childFDs={0:"w", 1:"r", 2:2, 3:"w", 4:"r"})
return gp.deferred

In this example, the status output could be parsed after the fact. It could, of course, be parsed on the fly, as it is a
simple line-oriented protocol. Methods from LineReceiver could be mixed in to make this parsing more convenient.

The stderr mapping (“2:2”) used will cause any GPG errors to be emitted by the parent program, just as if those errors
had caused in the parent itself. This is sometimes desirable (it roughly corresponds to letting exceptions propagate
upwards), especially if you do not expect to encounter errors in the child process and want them to be more visible to
the end user. The alternative is to map stderr to a read-pipe and handle any such output from within the ProcessProtocol
(roughly corresponding to catching the exception locally).

2.1.13 Introduction to Deferreds

This document introduces Deferreds, Twisted’s preferred mechanism for controlling the flow of asynchronous code.
Don’t worry if you don’t know what that means yet – that’s why you are here!

It is intended for newcomers to Twisted, and was written particularly to help people read and understand code that
already uses Deferreds.

This document assumes you have a good working knowledge of Python. It assumes no knowledge of Twisted.

By the end of the document, you should understand what Deferreds are and how they can be used to coordinate
asynchronous code. In particular, you should be able to:

• Read and understand code that uses Deferreds

• Translate from synchronous code to asynchronous code and back again

• Implement any sort of error-handling for asynchronous code that you wish

The joy of order

When you write Python code, one prevailing, deep, unassailled assumption is that a line of code within a block is only
ever executed after the preceding line is finished.

pod_bay_doors.open()
pod.launch()

140 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.html

Twisted Documentation, Release 16.0.0

The pod bay doors open, and only then does the pod launch. That’s wonderful. One-line-after-another is a built-in
mechanism in the language for encoding the order of execution. It’s clear, terse, and unambiguous.

Exceptions make things more complicated. If pod_bay_doors.open() raises an exception, then we cannot know
with certainty that it completed, and so it would be wrong to proceed blithely to the next line. Thus, Python gives
us try, except, finally, and else, which together model almost every conceivable way of handling a raised
exception, and tend to work really well.

Function application is the other way we encode order of execution:

pprint(sorted(x.get_names()))

First x.get_names() gets called, then sorted is called with its return value, and then pprint with whatever
sorted returns.

It can also be written as:

names = x.get_names()
sorted_names = sorted(names)
pprint(sorted_names)

Sometimes it leads us to encode the order when we don’t need to, as in this example:

total = 0
for account in accounts:

total += account.get_balance()
print "Total balance $%s" % (total,)

But that’s normally not such a big deal.

All in all, things are pretty good, and all of the explanation above is laboring familiar and obvious points. One line
comes after another and one thing happens after another, and both facts are inextricably tied.

But what if we had to do it differently?

A hypothetical problem

What if we could no longer rely on the previous line of code being finished (whatever that means) before we started
to interpret & execute the next line of code? What if pod_bay_doors.open() returned immediately, triggering
something somewhere else that would eventually open the pod bay doors, recklessly sending the Python interpreter
plunging into pod.launch() ?

That is, what would we do if the order of execution did not match the order of lines of Python? If “returning” no longer
meant “finishing”?

Asynchronous operations?

How would we prevent our pod from hurtling into the still-closed doors? How could we respond to a potential failure
to open the doors at all? What if opening the doors gave us some crucial information that we needed in order to launch
the pod? How would we get access to that information?

And, crucially, since we are writing code, how can we write our code so that we can build other code on top of it?

The components of a solution

We would still need a way of saying “do this only when that has finished”.

We would need a way of distinguishing between successful completion and interrupted processing, normally modeled
with try, expect, else, and finally.

2.1. Developer Guides 141

Twisted Documentation, Release 16.0.0

We need a mechanism for getting return failures and exception information from the thing that just executed to the
thing that needs to happen next.

We need somehow to be able to operate on results that we don’t have yet. Instead of acting, we need to make and
encode plans for how we would act if we could.

Unless we hack the interpreter somehow, we would need to build this with the Python language constructs we are
given: methods, functions, objects, and the like.

Perhaps we want something that looks a little like this:

placeholder = pod_bay_doors.open()
placeholder.when_done(pod.launch)

One solution: Deferred

Twisted tackles this problem with Deferreds, a type of object designed to do one thing, and one thing only: encode an
order of execution separately from the order of lines in Python source code.

It doesn’t deal with threads, parallelism, signals, or subprocesses. It doesn’t know anything about an event loop,
greenlets, or scheduling. All it knows about is what order to do things in. How does it know that? Because we
explicitly tell it the order that we want.

Thus, instead of writing:

pod_bay_doors.open()
pod.launch()

We write:

d = pod_bay_doors.open()
d.addCallback(lambda ignored: pod.launch())

That introduced a dozen new concepts in a couple of lines of code, so let’s break it down. If you think you’ve got it,
you might want to skip to the next section.

Here, pod_bay_doors.open() is returning a Deferred, which we assign to d. We can think of d as a placeholder,
representing the value that open() will eventually return when it finally gets around to finishing.

To “do this next”, we add a callback to d. A callback is a function that will be called with whatever open()
eventually returns. In this case, we don’t care, so we make a function with a single, ignored parameter that just calls
pod.launch().

So, we’ve replaced the “order of lines is order of execution” with a deliberate, in-Python encoding of the order of
execution, where d represents the particular flow and d.addCallback replaces “new line”.

Of course, programs generally consist of more than two lines, and we still don’t know how to deal with failure.

Getting it right: The failure cases

In what follows, we are going to take each way of expressing order of operations in normal Python (using lines of code
and try/except) and translate them into an equivalent code built with Deferred objects.

This is going to be a bit painstaking, but if you want to really understand how to use Deferreds and maintain code that
uses them, it is worth understanding each example below.

142 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.html

Twisted Documentation, Release 16.0.0

One thing, then another, then another

Recall our example from earlier:

pprint(sorted(x.get_names()))

Also written as:

names = x.get_names()
sorted_names = sorted(names)
pprint(sorted_names)

What if neither get_names nor sorted can be relied on to finish before they return? That is, if both are asyn-
chronous operations?

Well, in Twisted-speak they would return Deferreds and so we would write:

d = x.get_names()
d.addCallback(sorted)
d.addCallback(pprint)

Eventually, sorted will get called with whatever get_names finally delivers. When sorted finishes, pprint
will be called with whatever it delivers.

We could also write this as:

x.get_names().addCallback(sorted).addCallback(pprint)

Since d.addCallback returns d.

Simple failure handling

We often want to write code equivalent to this:

try:
x.get_names()

except Exception, e:
report_error(e)

How would we write this with Deferreds?

d = x.get_names()
d.addErrback(report_error)

errback is the Twisted name for a callback that is called when an error is received.

This glosses over an important detail. Instead of getting the exception object e, report_error would get a Failure
object, which has all of the useful information that e does, but is optimized for use with Deferreds.

We’ll dig into that a bit later, after we’ve dealt with all of the other combinations of exceptions.

Handle an error, but do something else on success

What if we want to do something after our try block if it actually worked? Abandoning our contrived examples and
reaching for generic variable names, we get:

2.1. Developer Guides 143

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.python.failure.Failure.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.html

Twisted Documentation, Release 16.0.0

try:
y = f()

except Exception, e:
g(e)

else:
h(y)

Well, we’d write it like this with Deferreds:

d = f()
d.addCallbacks(h, g)

Where addCallbacks means “add a callback and an errback at the same time”. h is the callback, g is the errback.

Now that we have addCallbacks along with addErrback and addCallback, we can match any possible
combination of try, except, else, and finally by varying the order in which we call them. Explaining exactly
how it works is tricky (although the Deferred reference does rather a good job), but once we’re through all of the
examples it ought to be clearer.

Handle an error, then proceed anyway

What if we want to do something after our try/except block, regardless of whether or not there was an exception?
That is, what if we wanted to do the equivalent of this generic code:

try:
y = f()

except Exception, e:
y = g(e)

h(y)

And with Deferreds:

d = f()
d.addErrback(g)
d.addCallback(h)

Because addErrback returns d, we can chain the calls like so:

f().addErrback(g).addCallback(h)

The order of addErrback and addCallback matters. In the next section, we can see what would happen when
we swap them around.

Handle an error for the entire operation

What if we want to wrap up a multi-step operation in one exception handler?

try:
y = f()
z = h(y)

except Exception, e:
g(e)

With Deferreds, it would look like this:

d = f()
d.addCallback(h)
d.addErrback(g)

144 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.html

Twisted Documentation, Release 16.0.0

Or, more succinctly:

d = f().addCallback(h).addErrback(g)

Do something regardless

What about finally? How do we do something regardless of whether or not there was an exception? How do we
translate this:

try:
y = f()

finally:
g()

Well, roughly we do this:

d = f()
d.addBoth(g)

This adds g as both the callback and the errback. It is equivalent to:

d.addCallbacks(g, g)

Why “roughly”? Because if f raises, g will be passed a Failure object representing the exception. Otherwise, g will
be passed the asynchronous equivalent of the return value of f() (i.e. y).

Inline callbacks - using ‘yield’

Twisted features a decorator named inlineCallbacks which allows you to work with Deferreds without writing
callback functions.

This is done by writing your code as generators, which yield Deferreds instead of attaching callbacks.

Consider the following function written in the traditional Deferred style:

def getUsers():
d = makeRequest("GET", "/users")
d.addCallback(json.loads)
return d

using inlineCallbacks, we can write this as:

from twisted.internet.defer import inlineCallbacks, returnValue

@inlineCallbacks
def getUsers(self):

responseBody = yield makeRequest("GET", "/users")
returnValue(json.loads(responseBody))

a couple of things are happening here:

1. instead of calling addCallback on the Deferred returned by makeRequest, we yield it. This causes
Twisted to return the Deferred‘s result to us.

2. we use returnValue to propagate the final result of our function. Because this function is a generator, we
cannot use the return statement; that would be a syntax error.

Note: New in version 15.0.

2.1. Developer Guides 145

https://twistedmatrix.com/documents/16.0.0/api/twisted.python.failure.Failure.html

Twisted Documentation, Release 16.0.0

On Python 3.3 and above, instead of writing returnValue(json.loads(responseBody)) you can instead
write return json.loads(responseBody). This can be a significant readability advantage, but unfortunately
if you need compatibility with Python 2, this isn’t an option.

Both versions of getUsers present exactly the same API to their callers: both return a Deferred that fires with
the parsed JSON body of the request. Though the inlineCallbacks version looks like synchronous code, which
blocks while waiting for the request to finish, each yield statement allows other code to run while waiting for the
Deferred being yielded to fire.

inlineCallbacks become even more powerful when dealing with complex control flow and error handling. For
example, what if makeRequest fails due to a connection error? For the sake of this example, let’s say we want to
log the exception and return an empty list.

def getUsers():
d = makeRequest("GET", "/users")

def connectionError(failure):
failure.trap(ConnectionError)
log.failure("makeRequest failed due to connection error",

failure)
return []

d.addCallbacks(json.loads, connectionError)
return d

With inlineCallbacks, we can rewrite this as:

@inlineCallbacks
def getUsers(self):

try:
responseBody = yield makeRequest("GET", "/users")

except ConnectionError:
log.failure("makeRequest failed due to connection error")
returnValue([])

returnValue(json.loads(responseBody))

Our exception handling is simplified because we can use Python’s familiar try / except syntax for handling
ConnectionErrors.

Conclusion

You have been introduced to asynchronous code and have seen how to use Deferreds to:

• Do something after an asynchronous operation completes successfully

• Use the result of a successful asynchronous operation

• Catch errors in asynchronous operations

• Do one thing if an operation succeeds, and a different thing if it fails

• Do something after an error has been handled successfully

• Wrap multiple asynchronous operations with one error handler

• Do something after an asynchronous operation, regardless of whether it succeeded or failed

• Write code without callbacks using inlineCallbacks

146 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.html

Twisted Documentation, Release 16.0.0

These are very basic uses of Deferred. For detailed information about how they work, how to combine multiple
Deferreds, and how to write code that mixes synchronous and asynchronous APIs, see the Deferred reference. Alter-
natively, read about how to write functions that generate Deferreds.

2.1.14 Deferred Reference

This document is a guide to the behaviour of the twisted.internet.defer.Deferred object, and to various ways you can
use them when they are returned by functions.

This document assumes that you are familiar with the basic principle that the Twisted framework is structured around:
asynchronous, callback-based programming, where instead of having blocking code in your program or using threads
to run blocking code, you have functions that return immediately and then begin a callback chain when data is available.

After reading this document, the reader should expect to be able to deal with most simple APIs in Twisted and Twisted-
using code that return Deferreds.

• what sorts of things you can do when you get a Deferred from a function call; and

• how you can write your code to robustly handle errors in Deferred code.

Deferreds

Twisted uses the Deferred object to manage the callback sequence. The client application attaches a series of functions
to the deferred to be called in order when the results of the asynchronous request are available (this series of functions
is known as a series of callbacks , or a callback chain), together with a series of functions to be called if there is an
error in the asynchronous request (known as a series of errbacks or an**errback chain**). The asynchronous library
code calls the first callback when the result is available, or the first errback when an error occurs, and the Deferred
object then hands the results of each callback or errback function to the next function in the chain.

Callbacks

A twisted.internet.defer.Deferred is a promise that a function will at some point have a result. We can attach callback
functions to a Deferred, and once it gets a result these callbacks will be called. In addition Deferreds allow the
developer to register a callback for an error, with the default behavior of logging the error. The deferred mechanism
standardizes the application programmer’s interface with all sorts of blocking or delayed operations.

from twisted.internet import reactor, defer

def getDummyData(inputData):
"""
This function is a dummy which simulates a delayed result and
returns a Deferred which will fire with that result. Don't try too
hard to understand this.
"""
print('getDummyData called')
deferred = defer.Deferred()
simulate a delayed result by asking the reactor to fire the
Deferred in 2 seconds time with the result inputData * 3
reactor.callLater(2, deferred.callback, inputData * 3)
return deferred

def cbPrintData(result):
"""
Data handling function to be added as a callback: handles the
data by printing the result

2.1. Developer Guides 147

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.html

Twisted Documentation, Release 16.0.0

"""
print('Result received: {}'.format(result))

deferred = getDummyData(3)
deferred.addCallback(cbPrintData)

manually set up the end of the process by asking the reactor to
stop itself in 4 seconds time
reactor.callLater(4, reactor.stop)
start up the Twisted reactor (event loop handler) manually
print('Starting the reactor')
reactor.run()

Multiple callbacks

Multiple callbacks can be added to a Deferred. The first callback in the Deferred’s callback chain will be called with
the result, the second with the result of the first callback, and so on. Why do we need this? Well, consider a Deferred
returned by twisted.enterprise.adbapi - the result of a SQL query. A web widget might add a callback that converts
this result into HTML, and pass the Deferred onwards, where the callback will be used by twisted to return the result
to the HTTP client. The callback chain will be bypassed in case of errors or exceptions.

from twisted.internet import reactor, defer

class Getter:
def gotResults(self, x):

"""
The Deferred mechanism provides a mechanism to signal error
conditions. In this case, odd numbers are bad.

This function demonstrates a more complex way of starting
the callback chain by checking for expected results and
choosing whether to fire the callback or errback chain
"""
if self.d is None:

print("Nowhere to put results")
return

d = self.d
self.d = None
if x % 2 == 0:

d.callback(x*3)
else:

d.errback(ValueError("You used an odd number!"))

def _toHTML(self, r):
"""
This function converts r to HTML.

It is added to the callback chain by getDummyData in
order to demonstrate how a callback passes its own result
to the next callback
"""
return "Result: %s" % r

def getDummyData(self, x):
"""
The Deferred mechanism allows for chained callbacks.

148 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

In this example, the output of gotResults is first
passed through _toHTML on its way to printData.

Again this function is a dummy, simulating a delayed result
using callLater, rather than using a real asynchronous
setup.
"""
self.d = defer.Deferred()
simulate a delayed result by asking the reactor to schedule
gotResults in 2 seconds time
reactor.callLater(2, self.gotResults, x)
self.d.addCallback(self._toHTML)
return self.d

def cbPrintData(result):
print(result)

def ebPrintError(failure):
import sys
sys.stderr.write(str(failure))

this series of callbacks and errbacks will print an error message
g = Getter()
d = g.getDummyData(3)
d.addCallback(cbPrintData)
d.addErrback(ebPrintError)

this series of callbacks and errbacks will print "Result: 12"
g = Getter()
d = g.getDummyData(4)
d.addCallback(cbPrintData)
d.addErrback(ebPrintError)

reactor.callLater(4, reactor.stop)
reactor.run()

Note:

Pay particular attention to the handling of self.d in the gotResults method. Before the Deferred is fired
with a result or an error, the attribute is set to None so that the Getter instance no longer has a reference to
the Deferred about to be fired. This has several benefits. First, it avoids any chance Getter.gotResults
will accidentally fire the same Deferred more than once (which would result in an AlreadyCalledError
exception). Second, it allows a callback on that Deferred to call Getter.getDummyData (which sets a
new value for the d attribute) without causing problems. Third, it makes the Python garbage collector’s job
easier by eliminating a reference cycle.

2.1. Developer Guides 149

Twisted Documentation, Release 16.0.0

Visual Explanation

1. Requesting method (data sink) requests data, gets Deferred object.

2. Requesting method attaches callbacks to Deferred object.

1. When the result is ready, give it to the Deferred object. .callback(result) if the operation

150 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

succeeded, .errback(failure) if it failed. Note that failure is typically an instance of a
twisted.python.failure.Failure instance.

2. Deferred object triggers previously-added (call/err)back with the result or failure . Execution then fol-
lows the following rules, going down the chain of callbacks to be processed.

• Result of the callback is always passed as the first argument to the next callback, creating a chain of
processors.

• If a callback raises an exception, switch to errback.

• An unhandled failure gets passed down the line of errbacks, this creating an asynchronous analog to a
series to a series of except: statements.

• If an errback doesn’t raise an exception or return a twisted.python.failure.Failure instance, switch to call-
back.

Errbacks

Deferred’s error handling is modeled after Python’s exception handling. In the case that no errors occur, all the
callbacks run, one after the other, as described above.

If the errback is called instead of the callback (e.g. because a DB query raised an error), then a
twisted.python.failure.Failure is passed into the first errback (you can add multiple errbacks, just like with callbacks).
You can think of your errbacks as being like except blocks of ordinary Python code.

Unless you explicitly raise an error in an except block, the Exception is caught and stops propagating, and
normal execution continues. The same thing happens with errbacks: unless you explicitly return a Failure or
(re-)raise an exception, the error stops propagating, and normal callbacks continue executing from that point (using
the value returned from the errback). If the errback does return a Failure or raise an exception, then that is passed
to the next errback, and so on.

Note: If an errback doesn’t return anything, then it effectively returns None , meaning that callbacks will continue to
be executed after this errback. This may not be what you expect to happen, so be careful. Make sure your errbacks
return a Failure (probably the one that was passed to it), or a meaningful return value for the next callback.

Also, twisted.python.failure.Failure instances have a useful method called trap, allowing you to effectively do the
equivalent of:

try:
code that may throw an exception
cookSpamAndEggs()

except (SpamException, EggException):
Handle SpamExceptions and EggExceptions
...

You do this by:

def errorHandler(failure):
failure.trap(SpamException, EggException)
Handle SpamExceptions and EggExceptions

d.addCallback(cookSpamAndEggs)
d.addErrback(errorHandler)

If none of arguments passed to failure.trap match the error encapsulated in that Failure , then it re-raises the
error.

There’s another potential “gotcha” here. There’s a method twisted.internet.defer.Deferred.addCallbacks which is sim-
ilar to, but not exactly the same as, addCallback followed by addErrback . In particular, consider these two
cases:

2.1. Developer Guides 151

https://twistedmatrix.com/documents/16.0.0/api/twisted.python.failure.Failure.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.python.failure.Failure.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.python.failure.Failure.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.python.failure.Failure.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.addCallbacks.html

Twisted Documentation, Release 16.0.0

Case 1
d = getDeferredFromSomewhere()
d.addCallback(callback1) # A
d.addErrback(errback1) # B
d.addCallback(callback2)
d.addErrback(errback2)

Case 2
d = getDeferredFromSomewhere()
d.addCallbacks(callback1, errback1) # C
d.addCallbacks(callback2, errback2)

If an error occurs in callback1 , then for Case 1 errback1 will be called with the failure. For Case 2, errback2
will be called. Be careful with your callbacks and errbacks.

What this means in a practical sense is in Case 1, the callback in line A will handle a success condition from
getDeferredFromSomewhere , and the errback in line B will handle any errors that occur from either the up-
stream source, or that occur in A . In Case 2, the errback in line C will only handle an error condition raised by
getDeferredFromSomewhere , it will not do any handling of errors raised in callback1 .

Unhandled Errors

If a Deferred is garbage-collected with an unhandled error (i.e. it would call the next errback if there was one), then
Twisted will write the error’s traceback to the log file. This means that you can typically get away with not adding
errbacks and still get errors logged. Be careful though; if you keep a reference to the Deferred around, preventing it
from being garbage-collected, then you may never see the error (and your callbacks will mysteriously seem to have
never been called). If unsure, you should explicitly add an errback after your callbacks, even if all you do is:

Make sure errors get logged
from twisted.python import log
d.addErrback(log.err)

Handling either synchronous or asynchronous results

In some applications, there are functions that might be either asynchronous or synchronous. For example, a user
authentication function might be able to check in memory whether a user is authenticated, allowing the authentication
function to return an immediate result, or it may need to wait on network data, in which case it should return a Deferred
to be fired when that data arrives. However, a function that wants to check if a user is authenticated will then need to
accept both immediate results and Deferreds.

In this example, the library function authenticateUser uses the application function isValidUser to authen-
ticate a user:

def authenticateUser(isValidUser, user):
if isValidUser(user):

print("User is authenticated")
else:

print("User is not authenticated")

However, it assumes that isValidUser returns immediately, whereas isValidUser may actually authenticate
the user asynchronously and return a Deferred. It is possible to adapt this trivial user authentication code to accept
either a synchronous isValidUser or an asynchronous isValidUser , allowing the library to handle either
type of function. It is, however, also possible to adapt synchronous functions to return Deferreds. This section
describes both alternatives: handling functions that might be synchronous or asynchronous in the library function
(authenticateUser) or in the application code.

152 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

Handling possible Deferreds in the library code

Here is an example of a synchronous user authentication function that might be passed to authenticateUser :

synch-validation.py

def synchronousIsValidUser(user):
'''
Return true if user is a valid user, false otherwise
'''
return user in ["Alice", "Angus", "Agnes"]

However, here’s an asynchronousIsValidUser function that returns a Deferred:

from twisted.internet import reactor, defer

def asynchronousIsValidUser(user):
d = defer.Deferred()
reactor.callLater(2, d.callback, user in ["Alice", "Angus", "Agnes"])
return d

Our original implementation of authenticateUser expected isValidUser to be synchronous, but now we
need to change it to handle both synchronous and asynchronous implementations of isValidUser . For this,
we use maybeDeferred to call isValidUser , ensuring that the result of isValidUser is a Deferred, even if
isValidUser is a synchronous function:

from twisted.internet import defer

def printResult(result):
if result:

print("User is authenticated")
else:

print("User is not authenticated")

def authenticateUser(isValidUser, user):
d = defer.maybeDeferred(isValidUser, user)
d.addCallback(printResult)

Now isValidUser could be either synchronousIsValidUser or asynchronousIsValidUser .

It is also possible to modify synchronousIsValidUser to return a Deferred, see Generating Deferreds for more
information.

Cancellation

Motivation

A Deferred may take any amount of time to be called back; in fact, it may never be called back. Your users may not
be that patient. Since all actions taken when the Deferred completes are in your application or library’s callback code,
you always have the option of simply disregarding the result when you receive it, if it’s been too long. However, while
you’re ignoring it, the underlying operation represented by that Deferred is still chugging along in the background,
possibly consuming resources such as CPU time, memory, network bandwidth and maybe even disk space. So, when
the user has closed the window, hit the cancel button, disconnected from your server or sent a “stop” network message,
you will want to announce your indifference to the result of that operation so that the originator of the Deferred can
clean everything up and free those resources to be put to better use.

2.1. Developer Guides 153

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.maybeDeferred.html

Twisted Documentation, Release 16.0.0

Cancellation for Applications which Consume Deferreds

Here’s a simple example. You’re connecting to an external host with an endpoint , but that host is really slow. You
want to put a “cancel” button into your application to terminate the connection attempt, so the user can try connecting
to a different host instead. Here’s a simple sketch of such an application, with the actual user interface left as an
exercise for the reader:

def startConnecting(someEndpoint):
def connected(it):

"Do something useful when connected."
return someEndpoint.connect(myFactory).addCallback(connected)

...
connectionAttempt = startConnecting(endpoint)
def cancelClicked():

connectionAttempt.cancel()

Obviously (I hope), startConnecting is meant to be called by some UI element that lets the
user choose what host to connect to and then constructs an appropriate endpoint (perhaps using
twisted.internet.endpoints.clientFromString). Then, a cancel button, or similar, is hooked
up to the cancelClicked .

When connectionAttempt.cancel is invoked, that will:

1. cause the underlying connection operation to be terminated, if it is still ongoing

2. cause the connectionAttempt Deferred to be completed, one way or another, in a timely manner

3. likely cause the connectionAttempt Deferred to be errbacked with CancelledError

You may notice that that set of consequences is very heavily qualified. Although cancellation indicates the calling
API’s desire for the underlying operation to be stopped, the underlying operation cannot necessarily react immediately.
Even in this very simple example, there is already one thing that might not be interruptible: platform-native name
resolution blocks, and therefore needs to be executed in a thread; the connection operation can’t be cancelled if it’s
stuck waiting for a name to be resolved in this manner. So, the Deferred that you are cancelling may not callback or
errback right away.

A Deferred may wait upon another Deferred at any point in its callback chain (see “Handling...asynchronous results”,
above). There’s no way for a particular point in the callback chain to know if everything is finished. Since multiple
layers of the callback chain may wish to cancel the same Deferred, any layer may call .cancel() at any time. The
.cancel() method never raises any exception or returns any value; you may call it repeatedly, even on a Deferred
which has already fired, or which has no remaining callbacks.

The main reason for all these qualifications, aside from specific examples, is that anyone who instantiates a Deferred
may supply it with a cancellation function; that function can do absolutely anything that it wants to. Ideally, anything
it does will be in the service of stopping the operation your requested, but there’s no way to guarantee any exact
behavior across all Deferreds that might be cancelled. Cancellation of Deferreds is best effort. This may be the case
for a number of reasons:

1. The Deferred doesn’t know how to cancel the underlying operation.

2. The underlying operation may have reached an uncancellable state, because some irreversible operation has
been done.

3. The Deferred may already have a result, and so there’s nothing to cancel.

Calling cancel() will always succeed without an error regardless of whether or not cancellation was possible. In
cases 1 and 2 the Deferred may well errback with a twisted.internet.defer.CancelledError while
the underlying operation continues. Deferred s that support cancellation should document what they do when
cancelled, if they are uncancellable in certain edge cases, etc..

154 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/CancelledError.html

Twisted Documentation, Release 16.0.0

If the cancelled Deferred is waiting on another Deferred , the cancellation will be forwarded to the other
Deferred .

Default Cancellation Behavior

All Deferreds support cancellation. However, by default, they support a very rudimentary form of cancellation which
doesn’t free any resources.

Consider this example of a Deferred which is ignorant of cancellation:

operation = Deferred()
def x(result):

print("Hooray, a result:" + repr(x))
operation.addCallback(x)
...
def operationDone():

operation.callback("completed")

A caller of an API that receives operationmay call cancel on it. Since operation does not have a cancellation
function, one of two things will happen.

1. If operationDone has been called, and the operation has completed, nothing much will change.
operation will still have a result, and there are no more callbacks, so there’s no observable change in behav-
ior.

2. If operationDone has not yet been invoked, then operation will be immediately errbacked with a
CancelledError .

However, once it’s cancelled, there’s no way to tell operationDone not to run; it will eventually call
operation.callback later. In normal operation, issuing callback on a Deferred that has already
called back results in an AlreadyCalledError , and this would cause an ugly traceback that could not be
caught. Therefore, .callback can be invoked exactly once, causing a no-op, on a Deferred which has
been cancelled but has no canceller. If you call it multiple times, you will still get an AlreadyCalledError
exception.

Creating Cancellable Deferreds: Custom Cancellation Functions

Let’s imagine you are implementing an HTTP client, which returns a Deferred firing with the response from the server.
Cancellation is best achieved by closing the connection. In order to make cancellation do that, all you have to do is
pass a function to the constructor of the Deferred (it will get called with the Deferred that is being cancelled):

class HTTPClient(Protocol):
def request(self, method, path):

self.resultDeferred = Deferred(
lambda ignore: self.transport.abortConnection())

request = b"%s %s HTTP/1.0\r\n\r\n" % (method, path)
self.transport.write(request)
return self.resultDeferred

def dataReceived(self, data):
... parse HTTP response ...
... eventually call self.resultDeferred.callback() ...

Now if someone calls cancel() on the Deferred returned from HTTPClient.request() , the HTTP request
will be cancelled (assuming it’s not too late to do so). Care should be taken not to callback() a Deferred that has
already been cancelled.

2.1. Developer Guides 155

Twisted Documentation, Release 16.0.0

DeferredList

Sometimes you want to be notified after several different events have all happened, rather than waiting for
each one individually. For example, you may want to wait for all the connections in a list to close.
twisted.internet.defer.DeferredList is the way to do this.

To create a DeferredList from multiple Deferreds, you simply pass a list of the Deferreds you want it to wait for:

Creates a DeferredList
dl = defer.DeferredList([deferred1, deferred2, deferred3])

You can now treat the DeferredList like an ordinary Deferred; you can call addCallbacks and so on. The De-
ferredList will call its callback when all the deferreds have completed. The callback will be called with a list of the
results of the Deferreds it contains, like so:

A callback that unpacks and prints the results of a DeferredList
def printResult(result):

for (success, value) in result:
if success:

print('Success:', value)
else:

print('Failure:', value.getErrorMessage())

Create three deferreds.
deferred1 = defer.Deferred()
deferred2 = defer.Deferred()
deferred3 = defer.Deferred()

Pack them into a DeferredList
dl = defer.DeferredList([deferred1, deferred2, deferred3], consumeErrors=True)

Add our callback
dl.addCallback(printResult)

Fire our three deferreds with various values.
deferred1.callback('one')
deferred2.errback(Exception('bang!'))
deferred3.callback('three')

At this point, dl will fire its callback, printing:
Success: one
Failure: bang!
Success: three
(note that defer.SUCCESS == True, and defer.FAILURE == False)

A standard DeferredList will never call errback, but failures in Deferreds passed to a DeferredList will still errback
unless consumeErrors is passed True . See below for more details about this and other flags which modify the
behavior of DeferredList.

Note: If you want to apply callbacks to the individual Deferreds that go into the DeferredList, you should be careful
about when those callbacks are added. The act of adding a Deferred to a DeferredList inserts a callback into that
Deferred (when that callback is run, it checks to see if the DeferredList has been completed yet). The important thing
to remember is that it is this callback which records the value that goes into the result list handed to the DeferredList’s
callback.

Therefore, if you add a callback to the Deferred after adding the Deferred to the DeferredList, the value returned by
that callback will not be given to the DeferredList’s callback. To avoid confusion, we recommend not adding callbacks

156 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.DeferredList.html

Twisted Documentation, Release 16.0.0

to a Deferred once it has been used in a DeferredList.

def printResult(result):
print(result)

def addTen(result):
return result + " ten"

Deferred gets callback before DeferredList is created
deferred1 = defer.Deferred()
deferred2 = defer.Deferred()
deferred1.addCallback(addTen)
dl = defer.DeferredList([deferred1, deferred2])
dl.addCallback(printResult)
deferred1.callback("one") # fires addTen, checks DeferredList, stores "one ten"
deferred2.callback("two")
At this point, dl will fire its callback, printing:
[(1, 'one ten'), (1, 'two')]

Deferred gets callback after DeferredList is created
deferred1 = defer.Deferred()
deferred2 = defer.Deferred()
dl = defer.DeferredList([deferred1, deferred2])
deferred1.addCallback(addTen) # will run *after* DeferredList gets its value
dl.addCallback(printResult)
deferred1.callback("one") # checks DeferredList, stores "one", fires addTen
deferred2.callback("two")
At this point, dl will fire its callback, printing:
[(1, 'one), (1, 'two')]

Other behaviours

DeferredList accepts three keyword arguments that modify its behaviour:fireOnOneCallback ,
fireOnOneErrback and consumeErrors . If fireOnOneCallback is set, the DeferredList will im-
mediately call its callback as soon as any of its Deferreds call their callback. Similarly, fireOnOneErrback will
call errback as soon as any of the Deferreds call their errback. Note that DeferredList is still one-shot, like ordinary
Deferreds, so after a callback or errback has been called the DeferredList will do nothing further (it will just silently
ignore any other results from its Deferreds).

The fireOnOneErrback option is particularly useful when you want to wait for all the results if everything suc-
ceeds, but also want to know immediately if something fails.

The consumeErrors argument will stop the DeferredList from propagating any errors along the callback chains
of any Deferreds it contains (usually creating a DeferredList has no effect on the results passed along the callbacks
and errbacks of their Deferreds). Stopping errors at the DeferredList with this option will prevent “Unhandled error in
Deferred” warnings from the Deferreds it contains without needing to add extra errbacks 1 . Passing a true value for the
consumeErrors parameter will not change the behavior of fireOnOneCallback or fireOnOneErrback .

gatherResults

A common use for DeferredList is to “join” a number of parallel asynchronous operations, finishing success-
fully if all of the operations were successful, or failing if any one of the operations fails. In this case,

1 Unless of course a later callback starts a fresh error — but as we’ve already noted, adding callbacks to a Deferred after its used in a DeferredList
is confusing and usually avoided.

2.1. Developer Guides 157

Twisted Documentation, Release 16.0.0

twisted.internet.defer.gatherResults is a useful shortcut:

from twisted.internet import defer
d1 = defer.Deferred()
d2 = defer.Deferred()
d = defer.gatherResults([d1, d2], consumeErrors=True)

def cbPrintResult(result):
print(result)

d.addCallback(cbPrintResult)

d1.callback("one")
nothing is printed yet; d is still awaiting completion of d2
d2.callback("two")
printResult prints ["one", "two"]

The consumeErrors argument has the same meaning as it does for NEEDS A TITLE : if true, it causes
gatherResults to consume any errors in the passed-in Deferreds. Always use this argument unless you are adding
further callbacks or errbacks to the passed-in Deferreds, or unless you know that they will not fail. Otherwise, a failure
will result in an unhandled error being logged by Twisted. This argument is available since Twisted 11.1.0.

Class Overview

This is an overview API reference for Deferred from the point of using a Deferred returned by a function. It is not
meant to be a substitute for the docstrings in the Deferred class, but can provide guidelines for its use.

There is a parallel overview of functions used by the Deferred’s creator in Generating Deferreds .

Basic Callback Functions

• addCallbacks(self, callback[, errback, callbackArgs, callbackKeywords,
errbackArgs, errbackKeywords])

This is the method you will use to interact with Deferred. It adds a pair of callbacks “parallel” to each other (see
diagram above) in the list of callbacks made when the Deferred is called back to. The signature of a method
added using addCallbacks should be myMethod(result, *methodArgs, **methodKeywords) . If
your method is passed in the callback slot, for example, all arguments in the tuple callbackArgs will be
passed as *methodArgs to your method.

There are various convenience methods that are derivative of addCallbacks. I will not cover them in detail here,
but it is important to know about them in order to create concise code.

– addCallback(callback, *callbackArgs, **callbackKeywords)

Adds your callback at the next point in the processing chain, while adding an errback that will re-raise its
first argument, not affecting further processing in the error case.

Note that, while addCallbacks (plural) requires the arguments to be passed in a tuple, addCallback (sin-
gular) takes all its remaining arguments as things to be passed to the callback function. The reason is
obvious: addCallbacks (plural) cannot tell whether the arguments are meant for the callback or the er-
rback, so they must be specifically marked by putting them into a tuple. addCallback (singular) knows
that everything is destined to go to the callback, so it can use Python’s “*” and “**” syntax to collect the
remaining arguments.

– addErrback(errback, *errbackArgs, **errbackKeywords)

158 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.gatherResults.html

Twisted Documentation, Release 16.0.0

Adds your errback at the next point in the processing chain, while adding a callback that will return its first
argument, not affecting further processing in the success case.

– addBoth(callbackOrErrback, *callbackOrErrbackArgs,

**callbackOrErrbackKeywords)

This method adds the same callback into both sides of the processing chain at both points. Keep in mind
that the type of the first argument is indeterminate if you use this method! Use it for finally: style
blocks.

Chaining Deferreds

If you need one Deferred to wait on another, all you need to do is return a Deferred from a method added to addCall-
backs. Specifically, if you return Deferred B from a method added to Deferred A using A.addCallbacks, Deferred A’s
processing chain will stop until Deferred B’s .callback() method is called; at that point, the next callback in A will be
passed the result of the last callback in Deferred B’s processing chain at the time.

Note: If a Deferred is somehow returned from its own callbacks (directly or indirectly), the behavior is undefined.
The Deferred code will make an attempt to detect this situation and produce a warning. In the future, this will become
an exception.

If this seems confusing, don’t worry about it right now – when you run into a situation where you need this behavior,
you will probably recognize it immediately and realize why this happens. If you want to chain deferreds manually,
there is also a convenience method to help you.

• chainDeferred(otherDeferred)

Add otherDeferred to the end of this Deferred’s processing chain. When self.callback is called, the result
of my processing chain up to this point will be passed to otherDeferred.callback . Further additions to
my callback chain do not affect otherDeferred

This is the same as self.addCallbacks(otherDeferred.callback,
otherDeferred.errback)

See also

1. Generating Deferreds , an introduction to writing asynchronous functions that return Deferreds.

2.1.15 Generating Deferreds

Deferred objects are signals that a function you have called does not yet have the data you want available. When a
function returns a Deferred object, your calling function attaches callbacks to it to handle the data when available.

This document addresses the other half of the question: writing functions that return Deferreds, that is, constructing
Deferred objects, arranging for them to be returned immediately without blocking until data is available, and firing
their callbacks when the data is available.

This document assumes that you are familiar with the asynchronous model used by Twisted, and with using deferreds
returned by functions .

2.1. Developer Guides 159

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.html

Twisted Documentation, Release 16.0.0

Class overview

This is an overview API reference for Deferred from the point of creating a Deferred and firing its callbacks and
errbacks. It is not meant to be a substitute for the docstrings in the Deferred class, but can provide guidelines for its
use.

There is a parallel overview of functions used by calling function which the Deferred is returned to at Using Deferreds
.

Basic Callback Functions

• callback(result)

Run success callbacks with the given result. This can only be run once. Later calls to this or errback
will raise twisted.internet.defer.AlreadyCalledError . If further callbacks or errbacks are added after this point,
addCallbacks will run the callbacks immediately.

• errback(failure)

Run error callbacks with the given failure. This can only be run once. Later calls to this or callback will
raise twisted.internet.defer.AlreadyCalledError . If further callbacks or errbacks are added after this point, add-
Callbacks will run the callbacks immediately.

What Deferreds don’t do: make your code asynchronous

Deferreds do not make the code magically not block.

Let’s take this function as an example:

from twisted.internet import defer

TARGET = 10000

def largeFibonnaciNumber():
create a Deferred object to return:
d = defer.Deferred()

calculate the ten thousandth Fibonnaci number

first = 0
second = 1

for i in xrange(TARGET - 1):
new = first + second
first = second
second = new
if i % 100 == 0:

print "Progress: calculating the %dth Fibonnaci number" % i

give the Deferred the answer to pass to the callbacks:
d.callback(second)

return the Deferred with the answer:
return d

import time

160 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.AlreadyCalledError.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.AlreadyCalledError.html

Twisted Documentation, Release 16.0.0

timeBefore = time.time()

call the function and get our Deferred
d = largeFibonnaciNumber()

timeAfter = time.time()

print "Total time taken for largeFibonnaciNumber call: %0.3f seconds" % \
(timeAfter - timeBefore)

add a callback to it to print the number

def printNumber(number):
print "The %dth Fibonacci number is %d" % (TARGET, number)

print "Adding the callback now."

d.addCallback(printNumber)

You will notice that despite creating a Deferred in the largeFibonnaciNumber function, these things happened:

• the “Total time taken for largeFibonnaciNumber call” output shows that the function did not return immediately
as asynchronous functions are expected to do; and

• rather than the callback being added before the result was available and called after the result is available, it isn’t
even added until after the calculation has been completed.

The function completed its calculation before returning, blocking the process until it had finished, which is exactly
what asynchronous functions are not meant to do. Deferreds are not a non-blocking talisman: they are a signal for
asynchronous functions to use to pass results onto callbacks, but using them does not guarantee that you have an
asynchronous function.

Advanced Processing Chain Control

• pause()

Cease calling any methods as they are added, and do not respond to callback , until self.unpause() is
called.

• unpause()

If callback has been called on this Deferred already, call all the callbacks that have been added to this
Deferred since pause was called.

Whether it was called or not, this will put this Deferred in a state where further calls to addCallbacks or
callback will work as normal.

Returning Deferreds from synchronous functions

Sometimes you might wish to return a Deferred from a synchronous function. There are several reasons why, the major
two are maintaining API compatibility with another version of your function which returns a Deferred, or allowing for
the possibility that in the future your function might need to be asynchronous.

In the Using Deferreds reference, we gave the following example of a synchronous function:

synch-validation.py

2.1. Developer Guides 161

Twisted Documentation, Release 16.0.0

def synchronousIsValidUser(user):
'''
Return true if user is a valid user, false otherwise
'''
return user in ["Alice", "Angus", "Agnes"]

While we can require that callers of our function wrap our synchronous result in a Deferred using maybeDeferred , for
the sake of API compatibility it is better to return a Deferred ourselves using defer.succeed :

from twisted.internet import defer

def immediateIsValidUser(user):
'''
Returns a Deferred resulting in true if user is a valid user, false
otherwise
'''

result = user in ["Alice", "Angus", "Agnes"]

return a Deferred object already called back with the value of result
return defer.succeed(result)

There is an equivalent defer.fail method to return a Deferred with the errback chain already fired.

Integrating blocking code with Twisted

At some point, you are likely to need to call a blocking function: many functions in third party libraries will have long
running blocking functions. There is no way to ‘force’ a function to be asynchronous: it must be written that way
specifically. When using Twisted, your own code should be asynchronous, but there is no way to make third party
functions asynchronous other than rewriting them.

In this case, Twisted provides the ability to run the blocking code in a separate thread rather than letting it block your
application. The twisted.internet.threads.deferToThread function will set up a thread to run your blocking function,
return a Deferred and later fire that Deferred when the thread completes.

Let’s assume our largeFibonnaciNumber function from above is in a third party library (returning the result of
the calculation, not a Deferred) and is not easily modifiable to be finished in discrete blocks. This example shows it
being called in a thread, unlike in the earlier section we’ll see that the operation does not block our entire program:

def largeFibonnaciNumber():
"""
Represent a long running blocking function by calculating
the TARGETth Fibonnaci number
"""
TARGET = 10000

first = 0
second = 1

for i in xrange(TARGET - 1):
new = first + second
first = second
second = new

return second

from twisted.internet import threads, reactor

162 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.maybeDeferred.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.succeed.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.fail.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.threads.deferToThread.html

Twisted Documentation, Release 16.0.0

def fibonacciCallback(result):
"""
Callback which manages the largeFibonnaciNumber result by
printing it out
"""
print "largeFibonnaciNumber result =", result
make sure the reactor stops after the callback chain finishes,
just so that this example terminates
reactor.stop()

def run():
"""
Run a series of operations, deferring the largeFibonnaciNumber
operation to a thread and performing some other operations after
adding the callback
"""
get our Deferred which will be called with the largeFibonnaciNumber result
d = threads.deferToThread(largeFibonnaciNumber)
add our callback to print it out
d.addCallback(fibonacciCallback)
print "1st line after the addition of the callback"
print "2nd line after the addition of the callback"

if __name__ == '__main__':
run()
reactor.run()

Possible sources of error

Deferreds greatly simplify the process of writing asynchronous code by providing a standard for registering callbacks,
but there are some subtle and sometimes confusing rules that you need to follow if you are going to use them. This
mostly applies to people who are writing new systems that use Deferreds internally, and not writers of applications
that just add callbacks to Deferreds produced and processed by other systems. Nevertheless, it is good to know.

Firing Deferreds more than once is impossible

Deferreds are one-shot. You can only call Deferred.callback or Deferred.errback once. The processing
chain continues each time you add new callbacks to an already-called-back-to Deferred.

Synchronous callback execution

If a Deferred already has a result available, addCallback may call the callback synchronously: that is, immediately
after it’s been added. In situations where callbacks modify state, it is might be desirable for the chain of processing to
halt until all callbacks are added. For this, it is possible to pause and unpause a Deferred’s processing chain while
you are adding lots of callbacks.

Be careful when you use these methods! If you pause a Deferred, it is your responsibility to make sure that you
unpause it. The function adding the callbacks must unpause a paused Deferred, it should never be the responsibility of
the code that actually fires the callback chain by calling callback or errback as this would negate its usefulness!

2.1. Developer Guides 163

Twisted Documentation, Release 16.0.0

2.1.16 Scheduling tasks for the future

Let’s say we want to run a task X seconds in the future. The way to do that is defined in the reactor interface
twisted.internet.interfaces.IReactorTime :

from twisted.internet import reactor

def f(s):
print "this will run 3.5 seconds after it was scheduled: %s" % s

reactor.callLater(3.5, f, "hello, world")

f() will only be called if the event loop is started.
reactor.run()

If the result of the function is important or if it may be necessary to handle exceptions it raises, then the
twisted.internet.task.deferLater utility conveniently takes care of creating a Deferred and setting up a delayed call:

from twisted.internet import task
from twisted.internet import reactor

def f(s):
return "This will run 3.5 seconds after it was scheduled: %s" % s

d = task.deferLater(reactor, 3.5, f, "hello, world")
def called(result):

print result
d.addCallback(called)

f() will only be called if the event loop is started.
reactor.run()

If we want a task to run every X seconds repeatedly, we can use twisted.internet.task.LoopingCall:

from twisted.internet import task
from twisted.internet import reactor

loopTimes = 3
failInTheEnd = False
_loopCounter = 0

def runEverySecond():
"""
Called at ever loop interval.
"""
global _loopCounter

if _loopCounter < loopTimes:
_loopCounter += 1
print 'A new second has passed.'
return

if failInTheEnd:
raise Exception('Failure during loop execution.')

We looped enough times.
loop.stop()
return

164 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorTime.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.task.deferLater.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.task.LoopingCall.html

Twisted Documentation, Release 16.0.0

def cbLoopDone(result):
"""
Called when loop was stopped with success.
"""
print "Loop done."
reactor.stop()

def ebLoopFailed(failure):
"""
Called when loop execution failed.
"""
print failure.getBriefTraceback()
reactor.stop()

loop = task.LoopingCall(runEverySecond)

Start looping every 1 second.
loopDeferred = loop.start(1.0)

Add callbacks for stop and failure.
loopDeferred.addCallback(cbLoopDone)
loopDeferred.addErrback(ebLoopFailed)

reactor.run()

If we want to cancel a task that we’ve scheduled:

from twisted.internet import reactor

def f():
print "I'll never run."

callID = reactor.callLater(5, f)
callID.cancel()
reactor.run()

As with all reactor-based code, in order for scheduling to work the reactor must be started using reactor.run() .

2.1.17 Using Threads in Twisted

How Twisted Uses Threads Itself

All callbacks registered with the reactor - for example, dataReceived, connectionLost, or any higher-level
method that comes from these, such as render_GET in twisted.web, or a callback added to a Deferred - are called
from reactor.run. The terminology around this is that we say these callbacks are run in the “main thread”, or
“reactor thread” or “I/O thread”.

Therefore, internally, Twisted makes very little use of threads. This is not to say that it makes no use of threads; there
are plenty of APIs which have no non-blocking equivalent, so when Twisted needs to call those, it calls them in a
thread. One prominent example of this is system hostname resolution: unless you have configured Twisted to use its
own DNS client in twisted.names, it will have to use your operating system’s blocking APIs to map host names to
IP addresses, in the reactor’s thread pool. However, this is something you only need to know about for resource-tuning
purposes, like setting the number of threads to use; otherwise, it is an implementation detail you can ignore.

2.1. Developer Guides 165

Twisted Documentation, Release 16.0.0

It is a common mistake is to think that because Twisted can manage multiple connections once, things are happening
in multiple threads, and so you need to carefully manage locks. Lucky for you, Twisted does most things in one thread!
This document will explain how to interact with existing APIs which need to be run within their own threads because
they block. If you’re just using Twisted’s own APIs, the rule for threads is simply “don’t use them”.

Invoking Twisted From Other Threads

Methods within Twisted may only be invoked from the reactor thread unless otherwise noted. Very few things within
Twisted are thread-safe. For example, writing data to a transport from a protocol is not thread-safe. This means that
if you start a thread and call a Twisted method, you might get correct behavior... or you might get hangs, crashes, or
corrupted data. So don’t do it.

The right way to call methods on the reactor from another thread, and therefore any objects which might call methods
on the reactor, is to give a function to the reactor to execute within its own thread. This can be done using the function
callFromThread:

from twisted.internet import reactor
def notThreadSafe(someProtocol, message):

someProtocol.transport.write(b"a message: " + message)
def callFromWhateverThreadYouWant():

reactor.callFromThread(notThreadSafe, b"hello")

In this example, callFromWhateverThreadYouWant is thread-safe and can be invoked by any thread, but
notThreadSafe should only ever be called by code running in the thread where reactor.run is running.

Note: There are many objects within Twisted that represent values - for example, FilePath and URLPath - which you
may construct yourself. These may be safely constructed and used within a non-reactor thread as long as they are not
shared with other threads. However, you should be sure that these objects do not share any state, especially not with
the reactor. One good rule of thumb is that any object whose methods return Deferreds is almost certainly touching
the reactor at some point, and should never be accessed from a non-reactor thread.

Running Code In Threads

Sometimes we may want to run code in a non-reactor thread, to avoid blocking the reactor. Twisted provides an API
for doing so, the callInThread method on the reactor.

For example, to run a method in a non-reactor thread we can do:

from twisted.internet import reactor

def aSillyBlockingMethod(x):
import time
time.sleep(2)
print(x)

reactor.callInThread(aSillyBlockingMethod, "2 seconds have passed")
reactor.run()

callInThread will put your code into a queue, to be run by the next available thread in the reactor’s thread pool.
This means that depending on what other work has been submitted to the pool, your method may not run immediately.

Note: Keep in mind that callInThread can only concurrently run a fixed maximum number of tasks, and all users
of the reactor are sharing that limit. Therefore, you should not submit tasks which depend on other tasks in order to
complete to be executed by callInThread. An example of such a task would be something like this:

166 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorThreads.callFromThread.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.python.filepath.FilePath.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.python.urlpath.URLPath.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorThreads.callInThread.html

Twisted Documentation, Release 16.0.0

q = Queue()
def blocker():

print(q.get() + q.get())
def unblocker(a, b):

q.put(a)
q.put(b)

In this case, blocker will block forever unless unblocker can successfully run to give it inputs; similarly,
unblocker might block forever if blocker is not run to consume its outputs. So if you had a threadpool of
maximum size X, and you ran for each in range(X): reactor.callInThread(blocker), the reac-
tor threadpool would be wedged forever, unable to process more work or even shut down.

See “Managing the Reactor Thread Pool” below to tune these limits.

Getting Results

callInThread and callFromThread allow you to move the execution of your code out of and into the reactor thread,
respectively, but that isn’t always enough.

When we run some code, we often want to know what its result was. For this, Twisted provides two methods:
deferToThread and blockingCallFromThread, defined in the twisted.internet.threads module.

To get a result from some blocking code back into the reactor thread, we can use deferToThread to execute it instead
of callFromThread.

from twisted.internet import reactor, threads

def doLongCalculation(): # do long calculation here ... return 3

def printResult(x): print(x)

run method in thread and get result as defer.Deferred d = threads.deferToThread(doLongCalculation)
d.addCallback(printResult) reactor.run()

Similarly, you want some code running in a non-reactor thread wants to invoke some code in the reactor thread and
get its result, you can use blockingCallFromThread:

from twisted.internet import threads, reactor, defer
from twisted.web.client import getPage
from twisted.web.error import Error

def inThread():
try:

result = threads.blockingCallFromThread(
reactor, getPage, "http://twistedmatrix.com/")

except Error, exc:
print exc

else:
print result

reactor.callFromThread(reactor.stop)

reactor.callInThread(inThread)
reactor.run()

blockingCallFromThread will return the object or raise the exception returned or raised by the function passed
to it. If the function passed to it returns a Deferred, it will return the value the Deferred is called back with or raise the
exception it is errbacked with.

2.1. Developer Guides 167

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.threads.deferToThread.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.threads.blockingCallFromThread.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.threads.deferToThread.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.threads.blockingCallFromThread.html

Twisted Documentation, Release 16.0.0

Managing the Reactor Thread Pool

We may want to modify the size of the thread pool, increasing or decreasing the number of threads in use. We can do
this:

from twisted.internet import reactor

reactor.suggestThreadPoolSize(30)

The default size of the thread pool depends on the reactor being used; the default reactor uses a minimum size of 0 and
a maximum size of 10.

The reactor thread pool is implemented by ThreadPool. To access methods on this object for more advanced tuning
and monitoring (see the API documentation for details) you can get the thread pool with getThreadPool.

2.1.18 Producers and Consumers: Efficient High-Volume Streaming

The purpose of this guide is to describe the Twisted producer and consumer system. The producer system allows
applications to stream large amounts of data in a manner which is both memory and CPU efficient, and which does
not introduce a source of unacceptable latency into the reactor.

Readers should have at least a passing familiarity with the terminology associated with interfaces.

Push Producers

A push producer is one which will continue to generate data without external prompting until told to stop; a pull
producer will generate one chunk of data at a time in response to an explicit request for more data.

The push producer API is defined by the IPushProducer interface. It is best to create a push producer when data
generation is closedly tied to an event source. For example, a proxy which forwards incoming bytes from one socket
to another outgoing socket might be implemented using a push producer: the dataReceived takes the role of an event
source from which the producer generates bytes, and requires no external intervention in order to do so.

There are three methods which may be invoked on a push producer at various points in its lifetime: pauseProducing ,
resumeProducing , and stopProducing .

pauseProducing()

In order to avoid the possibility of using an unbounded amount of memory to buffer produced data which cannot be
processed quickly enough, it is necessary to be able to tell a push producer to stop producing data for a while. This
is done using the pauseProducing method. Implementers of a push producer should temporarily stop producing
data when this method is invoked.

resumeProducing()

After a push producer has been paused for some time, the excess of data which it produced will have been pro-
cessed and the producer may again begin producing data. When the time for this comes, the push producer will have
resumeProducing invoked on it.

168 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.python.threadpool.ThreadPool.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorThreads.getThreadPool.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IPushProducer.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IProtocol.dataReceived.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IPushProducer.pauseProducing.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IPushProducer.resumeProducing.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IProducer.stopProducing.html

Twisted Documentation, Release 16.0.0

stopProducing()

Most producers will generate some finite (albeit, perhaps, unknown in advance) amount of data and then stop, having
served their intended purpose. However, it is possible that before this happens an event will occur which renders the
remaining, unproduced data irrelevant. In these cases, producing it anyway would be wasteful. The stopProducing
method will be invoked on the push producer. The implementation should stop producing data and clean up any
resources owned by the producer.

Pull Producers

The pull producer API is defined by the IPullProducer interface. Pull producers are useful in cases where there is
no clear event source involved with the generation of data. For example, if the data is the result of some algorithmic
process that is bound only by CPU time, a pull producer is appropriate.

Pull producers are defined in terms of only two methods: resumeProducing and stopProducing .

resumeProducing()

Unlike push producers, a pull producer is expected to only produce data in response to resumeProducing being
called. This method will be called whenever more data is required. How much data to produce in response to this
method call depends on various factors: too little data and runtime costs will be dominated by the back-and-forth event
notification associated with a buffer becoming empty and requesting more data to process; too much data and memory
usage will be driven higher than it needs to be and the latency associated with creating so much data will cause overall
performance in the application to suffer. A good rule of thumb is to generate between 16 and 64 kilobytes of data at a
time, but you should experiment with various values to determine what is best for your application.

stopProducing()

This method has the same meaning for pull producers as it does for push producers.

Consumers

This far, I’ve discussed the various external APIs of the two kinds of producers supported by Twisted. However, I have
not mentioned where the data a producer generates actually goes, nor what entity is responsible for invoking these
APIs. Both of these roles are filled by consumers . Consumers are defined by the one interface IConsumer .

IConsumer , defines three methods: registerProducer , unregisterProducer , and write .

registerProducer(producer, streaming)

So that a consumer can invoke methods on a producer, the consumer needs to be told about the producer. This is done
with the registerProducer method. The first argument is either a IPullProducer or IPushProducer
provider; the second argument indicates which of these interfaces is provided: True for push producers, False for
pull producers.

unregisterProducer()

Eventually a consumer will not longer be interested in a producer. This could be because the producer has finished
generating all its data, or because the consumer is moving on to something else, or any number of other reasons. In
any case, this method reverses the effects of registerProducer .

2.1. Developer Guides 169

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IPullProducer.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IPullProducer.resumeProducing.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IProducer.stopProducing.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IConsumer.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IConsumer.registerProducer.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IConsumer.unregisterProducer.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IConsumer.write.html

Twisted Documentation, Release 16.0.0

write(data)

As you might guess, this is the method which a producer calls when it has generated some data. Push producers
should call it as frequently as they like as long as they are not paused. Pull producers should call it once for each time
resumeProducing is called on them.

Further Reading

An example push producer application can be found in doc/examples/streaming.py .

• Components: Interfaces and Adapters

• FileSender : A Simple Pull Producer

2.1.19 Choosing a Reactor and GUI Toolkit Integration

Overview

Twisted provides a variety of implementations of the twisted.internet.reactor . The specialized implementations are
suited for different purposes and are designed to integrate better with particular platforms.

The epoll()-based reactor is Twisted’s default on Linux. Other platforms use poll() , or the most cross-platform reactor,
select() .

Platform-specific reactor implementations exist for:

• Poll for Linux

• Epoll for Linux 2.6

• WaitForMultipleObjects (WFMO) for Win32

• Input/Output Completion Port (IOCP) for Win32

• KQueue for FreeBSD and Mac OS X

• CoreFoundation for Mac OS X

The remaining custom reactor implementations provide support for integrating with the native event loops of various
graphical toolkits. This lets your Twisted application use all of the usual Twisted APIs while still being a graphical
application.

Twisted currently integrates with the following graphical toolkits:

• GTK+ 2.0

• GTK+ 3.0 and GObject Introspection

• Tkinter

• wxPython

• Win32

• CoreFoundation

• PyUI

When using applications that are runnable using twistd , e.g. TACs or plugins, there is no need to choose a reactor
explicitly, since this can be chosen using twistd ‘s -r option.

170 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.protocols.basic.FileSender.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.reactor.html

Twisted Documentation, Release 16.0.0

In all cases, the event loop is started by calling reactor.run() . In all cases, the event loop should be stopped
with reactor.stop() .

IMPORTANT: installing a reactor should be the first thing done in the app, since any code that does from
twisted.internet import reactor will automatically install the default reactor if the code hasn’t already
installed one.

Reactor Functionality

Status TCP SSL UDP Thread-
ing

Pro-
cesses

Schedul-
ing

Plat-
forms

select() Stable Y Y Y Y Y Y Unix,
Win32

poll Stable Y Y Y Y Y Y Unix
WaitForMultipleObjects
(WFMO) for Win32

Experi-
mental

Y Y Y Y Y Y Win32

Input/Output Completion Port
(IOCP) for Win32

Experi-
mental

Y Y Y Y Y Y Win32

CoreFoundation Unmain-
tained

Y Y Y Y Y Y Mac OS
X

epoll Stable Y Y Y Y Y Y Linux
2.6

GTK+ Stable Y Y Y Y Y Y Unix,
Win32

wx Experi-
mental

Y Y Y Y Y Y Unix,
Win32

kqueue Stable Y Y Y Y Y Y FreeBSD

General Purpose Reactors

Select()-based Reactor

The select reactor is the default on platforms that don’t provide a better alternative that covers all use cases. If the
select reactor is desired, it may be installed via:

from twisted.internet import selectreactor
selectreactor.install()

from twisted.internet import reactor

Platform-Specific Reactors

Poll-based Reactor

The PollReactor will work on any platform that provides select.poll . With larger numbers of connected sockets,
it may provide for better performance than the SelectReactor.

from twisted.internet import pollreactor
pollreactor.install()

from twisted.internet import reactor

2.1. Developer Guides 171

Twisted Documentation, Release 16.0.0

KQueue

The KQueue Reactor allows Twisted to use FreeBSD’s kqueue mechanism for event scheduling. See instructions in
the twisted.internet.kqreactor ‘s docstring for installation notes.

from twisted.internet import kqreactor
kqreactor.install()

from twisted.internet import reactor

WaitForMultipleObjects (WFMO) for Win32

The Win32 reactor is not yet complete and has various limitations and issues that need to be addressed. The reactor
supports GUI integration with the win32gui module, so it can be used for native Win32 GUI applications.

from twisted.internet import win32eventreactor
win32eventreactor.install()

from twisted.internet import reactor

Input/Output Completion Port (IOCP) for Win32

Windows provides a fast, scalable event notification system known as IO Completion Ports, or IOCP for short. Twisted
includes a reactor based on IOCP which is nearly complete.

from twisted.internet import iocpreactor
iocpreactor.install()

from twisted.internet import reactor

Epoll-based Reactor

The EPollReactor will work on any platform that provides epoll , today only Linux 2.6 and over. The implementation
of the epoll reactor currently uses the Level Triggered interface, which is basically like poll() but scales much better.

from twisted.internet import epollreactor
epollreactor.install()

from twisted.internet import reactor

GUI Integration Reactors

GTK+

Twisted integrates with PyGTK version 2.0 using the gtk2reactor . An example Twisted application that uses
GTK+ can be found in doc/core/examples/pbgtk2.py .

GTK-2.0 split the event loop out of the GUI toolkit and into a separate module called “glib” . To run an application
using the glib event loop, use the glib2reactor . This will be slightly faster than gtk2reactor (and does not
require a working X display), but cannot be used to run GUI applications.

172 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.kqreactor.html
http://www.pygtk.org/

Twisted Documentation, Release 16.0.0

from twisted.internet import gtk2reactor # for gtk-2.0
gtk2reactor.install()

from twisted.internet import reactor

from twisted.internet import glib2reactor # for non-GUI apps
glib2reactor.install()

from twisted.internet import reactor

GTK+ 3.0 and GObject Introspection

Twisted integrates with GTK+ 3 and GObject through PyGObject’s introspection using the gtk3reactor and
gireactor reactors.

from twisted.internet import gtk3reactor
gtk3reactor.install()

from twisted.internet import reactor

from twisted.internet import gireactor # for non-GUI apps
gireactor.install()

from twisted.internet import reactor

GLib 3.0 introduces the concept of GApplication , a class that handles application uniqueness in a cross-platform
way and provides its own main loop. Its counterpart GtkApplication also handles application lifetime with
respect to open windows. Twisted supports registering these objects with the event loop, which should be done before
running the reactor:

from twisted.internet import gtk3reactor
gtk3reactor.install()

from gi.repository import Gtk
app = Gtk.Application(...)

from twisted import reactor
reactor.registerGApplication(app)
reactor.run()

wxPython

Twisted currently supports two methods of integrating wxPython. Unfortunately, neither method will work on all
wxPython platforms (such as GTK2 or Windows). It seems that the only portable way to integrate with wxPython is
to run it in a separate thread. One of these methods may be sufficient if your wx app is limited to a single platform.

As with Tkinter , the support for integrating Twisted with a wxPython application uses specialized support code rather
than a simple reactor.

from wxPython.wx import *
from twisted.internet import wxsupport, reactor

myWxAppInstance = wxApp(0)
wxsupport.install(myWxAppInstance)

2.1. Developer Guides 173

http://gtk.org
http://live.gnome.org/PyGObject
http://www.wxpython.org

Twisted Documentation, Release 16.0.0

However, this has issues when running on Windows, so Twisted now comes with alternative wxPython support using
a reactor. Using this method is probably better. Initialization is done in two stages. In the first, the reactor is installed:

from twisted.internet import wxreactor
wxreactor.install()

from twisted.internet import reactor

Later, once a wxApp instance has been created, but before reactor.run() is called:

from twisted.internet import reactor
myWxAppInstance = wxApp(0)
reactor.registerWxApp(myWxAppInstance)

An example Twisted application that uses wxPython can be found in doc/core/examples/wxdemo.py .

CoreFoundation

Twisted integrates with PyObjC version 1.0. Sample applications using Cocoa and Twisted are available in the exam-
ples directory under doc/core/examples/threadedselect/Cocoa .

from twisted.internet import cfreactor
cfreactor.install()

from twisted.internet import reactor

Non-Reactor GUI Integration

Tkinter

The support for Tkinter doesn’t use a specialized reactor. Instead, there is some specialized support code:

from Tkinter import *
from twisted.internet import tksupport, reactor

root = Tk()

Install the Reactor support
tksupport.install(root)

at this point build Tk app as usual using the root object,
and start the program with "reactor.run()", and stop it
with "reactor.stop()".

PyUI

As with Tkinter , the support for integrating Twisted with a PyUI application uses specialized support code rather than
a simple reactor.

from twisted.internet import pyuisupport, reactor

pyuisupport.install(args=(640, 480), kw={'renderer': 'gl'})

An example Twisted application that uses PyUI can be found in doc/core/examples/pyuidemo.py .

174 Chapter 2. Twisted Core

http://pyobjc.sf.net/
http://wiki.python.org/moin/TkInter
http://pyui.sourceforge.net

Twisted Documentation, Release 16.0.0

2.1.20 Getting Connected with Endpoints

Introduction

On a network, one can think of any given connection as a long wire, stretched between two points. Lots of stuff can
happen along the length of that wire - routers, switches, network address translation, and so on, but that is usually
invisible to the application passing data across it. Twisted strives to make the nature of the “wire” as transparent as
possible, with highly abstract interfaces for passing and receiving data, such as ITransport and IProtocol.

However, the application can’t be completely ignorant of the wire. In particular, it must do something to start the
connection, and to do so, it must identify the end points of the wire. There are different names for the roles of each
end point - “initiator” and “responder”, “connector” and “listener”, or “client” and “server” - but the common theme
is that one side of the connection waits around for someone to connect to it, and the other side does the connecting.

In Twisted 10.1, several new interfaces were introduced to describe each of these roles for stream-oriented connections:
IStreamServerEndpoint and IStreamClientEndpoint. The word “stream”, in this case, refers to endpoints which treat a
connection as a continuous stream of bytes, rather than a sequence of discrete datagrams: TCP is a “stream” protocol
whereas UDP is a “datagram” protocol.

Constructing and Using Endpoints

In both Writing Servers and Writing Clients, we covered basic usage of endpoints; you construct an appropriate type
of server or client endpoint, and then call listen (for servers) or connect (for clients).

In both of those tutorials, we constructed specific types of endpoints directly. However, in most programs, you will
want to allow the user to specify where to listen or connect, in a way which will allow the user to request differ-
ent strategies, without having to adjust your program. In order to allow this, you should use clientFromString or
serverFromString.

There’s Not Much To It

Each type of endpoint is just an interface with a single method that takes an argument.
serverEndpoint.listen(factory) will start listening on that endpoint with your protocol factory,
and clientEndpoint.connect(factory) will start a single connection attempt. Each of these APIs returns
a value, though, which can be important.

However, if you are not already, you should be very familiar with Deferreds, as they are returned by both connect
and listen methods, to indicate when the connection has connected or the listening port is up and running.

Servers and Stopping

IStreamServerEndpoint.listen returns a Deferred that fires with an IListeningPort. Note that this deferred may errback.
The most common cause of such an error would be that another program is already using the requested port number,
but the exact cause may vary depending on what type of endpoint you are listening on. If you receive such an error, it
means that your application is not actually listening, and will not receive any incoming connections. It’s important to
somehow alert an administrator of your server, in this case, especially if you only have one listening port!

Note also that once this has succeeded, it will continue listening forever. If you need to stop listening for some reason,
in response to anything other than a full server shutdown (reactor.stop and / or twistd will usually handle
that case for you), make sure you keep a reference around to that listening port object so you can call IListening-
Port.stopListening on it. Finally, keep in mind that stopListening itself returns a Deferred, and the port may
not have fully stopped listening until that Deferred has fired.

2.1. Developer Guides 175

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.ITransport.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IProtocol.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IStreamServerEndpoint.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IStreamClientEndpoint.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.endpoints.clientFromString.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.endpoints.serverFromString.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IStreamServerEndpoint.listen.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IListeningPort.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IListeningPort.stopListening.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IListeningPort.stopListening.html

Twisted Documentation, Release 16.0.0

Most server applications will not need to worry about these details. One example of a case where you would need
to be concerned with all of these events would be an implementation of a protocol like non-PASV FTP, where new
listening ports need to be bound for the lifetime of a particular action, then disposed of.

Clients and Cancelling

connectProtocol connects a Protocol instance to a given IStreamClientEndpoint. It returns a Deferred which fires
with the Protocol once the connection has been made. Connection attempts may fail, and so that Deferred may
also errback. If it does so, you will have to try again; no further attempts will be made. See the client documentation
for an example use.

connectProtocol is a wrapper around a lower-level API: IStreamClientEndpoint.connect will use a protocol factory
for a new outgoing connection attempt. It returns a Deferred which fires with the IProtocol returned from the
factory’s buildProtocol method, or errbacks with the connection failure.

Connection attempts may also take a long time, and your users may become bored and wander off. If this happens,
and your code decides, for whatever reason, that you’ve been waiting for the connection too long, you can call De-
ferred.cancel on the Deferred returned from connect or connectProtocol, and the underlying machinery should give
up on the connection. This should cause the Deferred to errback, usually with CancelledError; although you should
consult the documentation for your particular endpoint type to see if it may do something different.

Although some endpoint types may imply a built-in timeout, the interface does not guarantee one. If you don’t have
any way for the application to cancel a wayward connection attempt, the attempt may just keep waiting forever. For
example, a very simple 30-second timeout could be implemented like this:

attempt = connectProtocol(myEndpoint, myProtocol)
reactor.callLater(30, attempt.cancel)

Note: If you’ve used ClientFactory before, keep in mind that the connect method takes a
Factory, not a ClientFactory. Even if you pass a ClientFactory to endpoint.connect, its
clientConnectionFailed and clientConnectionLost methods will not be called.

Maximizing the Return on your Endpoint Investment

Directly constructing an endpoint in your application is rarely the best option, because it ties your application to
a particular type of transport. The strength of the endpoints API is in separating the construction of the endpoint
(figuring out where to connect or listen) and its activation (actually connecting or listening).

If you are implementing a library that needs to listen for connections or make outgoing connections, when possible, you
should write your code to accept client and server endpoints as parameters to functions or to your objects’ constructors.
That way, application code that calls your library can provide whatever endpoints are appropriate.

If you are writing an application and you need to construct endpoints yourself, you can allow users to specify arbitrary
endpoints described by a string using the clientFromString and serverFromString APIs. Since these APIs just take a
string, they provide flexibility: if Twisted adds support for new types of endpoints (for example, IPv6 endpoints, or
WebSocket endpoints), your application will automatically be able to take advantage of them with no changes to its
code.

Endpoints Aren’t Always the Answer

For many use-cases, especially the common case of a twistd plugin which runs a long-running server that just binds
a simple port, you might not want to use the endpoints APIs directly. Instead, you may want to construct an IService,
using strports.service, which will fit neatly into the required structure of the twistd plugin API. This doesn’t give your

176 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.endpoints.connectProtocol.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.protocol.Protocol.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IStreamClientEndpoint.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.endpoints.connectProtocol.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IStreamClientEndpoint.connect.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.cancel.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.cancel.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IStreamClientEndpoint.connect.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.endpoints.connectProtocol.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.CancelledError.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.endpoints.clientFromString.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.endpoints.serverFromString.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.application.service.IService.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.application.strports.service.html

Twisted Documentation, Release 16.0.0

application much control - the port starts listening at startup and stops listening at shutdown - but it does provide the
same flexibility in terms of what type of server endpoint your application will support.

It is, however, almost always preferable to use an endpoint rather than calling a lower-level APIs like connectTCP,
listenTCP, etc, directly. By accepting an arbitrary endpoint rather than requiring a specific reactor interface, you leave
your application open to lots of interesting transport-layer extensibility for the future.

Endpoint Types Included With Twisted

The parser used by clientFromString and serverFromString is extensible via third-party plugins, so the
endpoints available on your system depend on what packages you have installed. However, Twisted itself includes a
set of basic endpoints that will always be available.

Clients

TCP Supported arguments: host, port, timeout. timeout is optional.

For example, tcp:host=twistedmatrix.com:port=80:timeout=15.

TLS Required arguments: host, port.

Optional arguments: timeout, bindAddress, certificate, privateKey, trustRoots,
endpoint.

• host is a (UTF-8 encoded) hostname to connect to, as well as the host name to verify against.

• port is a numeric port number to connect to.

• timeout and bindAddress have the same meaning as the timeout and bindAddress for TCP
clients.

• certificate is the certificate to use for the client; it should be the path name of a PEM file containing
a certificate for which privateKey is the private key.

• privateKey is the client’s private key, matching the certificate specified by certificate. It should
be the path name of a PEM file containing an X.509 client certificate. If certificate is specified
but privateKey is unspecified, Twisted will look for the certificate in the same file as specified by
certificate.

• trustRoots specifies a path to a directory of PEM-encoded certificate files. If you leave this unspec-
ified, Twisted will do its best to use the platform default set of trust roots, which should be the default
WebTrust set.

• the optional endpoint parameter changes the meaning of the tls: endpoint slightly. Rather than the
default of connecting over TCP with the same hostname used for verification, you can connect over any
endpoint type. If you specify the endpoint here, host and port are used for certificate verification
purposes only. Bear in mind you will need to backslash-escape the colons in the endpoint description here.

This client connects to the supplied hostname, validates the server’s hostname against the supplied hostname,
and then upgrades to TLS immediately after validation succeeds.

The simplest example of this would be: tls:example.com:443.

You can use the endpoint: feature with TCP if you want to connect to a host name; for example, if your
DNS is not working, but you know that the IP address 7.6.5.4 points to awesome.site.example.com, you
could specify: tls:awesome.site.example.com:443:endpoint=tcp\:7.6.5.4\:443.

You can use it with any other endpoint type as well, though; for example, if you had a local UNIX socket that
established a tunnel to awesome.site.example.com in /var/run/awesome.sock, you could instead
do tls:awesome.site.example.com:443:endpoint=unix\:/var/run/awesome.sock.

2.1. Developer Guides 177

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorTCP.connectTCP.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorTCP.listenTCP.html

Twisted Documentation, Release 16.0.0

Or, from python code:

wrapped = HostnameEndpoint('example.com', 443)
contextFactory = optionsForClientTLS(hostname=u'example.com')
endpoint = wrapClientTLS(contextFactory, wrapped)
conn = endpoint.connect(Factory.forProtocol(Protocol))

UNIX Supported arguments: path, timeout, checkPID. path gives a filesystem path to a listening UNIX
domain socket server. checkPID (optional) enables a check of the lock file Twisted-based UNIX domain
socket servers use to prove they are still running.

For example, unix:path=/var/run/web.sock.

TCP (Hostname) Supported arguments: host, port, timeout. host is a hostname to connect to. timeout
is optional. It is a name-based TCP endpoint that returns the connection which is established first amongst the
resolved addresses.

For example,

endpoint = HostnameEndpoint(reactor, "twistedmatrix.com", 80)
conn = endpoint.connect(Factory.forProtocol(Protocol))

SSL (Deprecated)

Note: You should generally prefer the “TLS” client endpoint, above, unless you need to work with
versions of Twisted older than 16.0. Among other things:

• the ssl: client endpoint requires that you pass ‘’both” hostname= (for hostname verification)
as well as host= (for a TCP connection address) in order to get hostname verification, which is
required for security, whereas tls: does the correct thing by default by using the same hostname
for both.

• the ssl: client endpoint doesn’t work with IPv6, and the tls: endpoint does.

All TCP arguments are supported, plus: certKey, privateKey, caCertsDir. certKey (optional)
gives a filesystem path to a certificate (PEM format). privateKey (optional) gives a filesystem path to
a private key (PEM format). caCertsDir (optional) gives a filesystem path to a directory containing
trusted CA certificates to use to verify the server certificate.

For example, ssl:host=twistedmatrix.com:port=443:caCertsDir=/etc/ssl/certs.

Servers

TCP (IPv4) Supported arguments: port, interface, backlog. interface and backlog are optional.
interface is an IP address (belonging to the IPv4 address family) to bind to.

For example, tcp:port=80:interface=192.168.1.1.

TCP (IPv6) All TCP (IPv4) arguments are supported, with interface taking an IPv6 address literal instead.

For example, tcp6:port=80:interface=2001\:0DB8\:f00e\:eb00\:\:1.

SSL All TCP arguments are supported, plus: certKey, privateKey, extraCertChain, sslmethod, and
dhParameters. certKey (optional, defaults to the value of privateKey) gives a filesystem path to a certifi-
cate (PEM format). privateKey gives a filesystem path to a private key (PEM format). extraCertChain
gives a filesystem path to a file with one or more concatenated certificates in PEM format that establish the
chain from a root CA to the one that signed your certificate. sslmethod indicates which SSL/TLS version
to use (a value like TLSv1_METHOD). dhParameters gives a filesystem path to a file in PEM format with
parameters that are required for Diffie-Hellman key exchange. Since the this is required for the DHE-family of

178 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

ciphers that offer perfect forward secrecy (PFS), it is recommended to specify one. Such a file can be created
using openssl dhparam -out dh_param_1024.pem -2 1024. Please refer to OpenSSL’s docu-
mentation on dhparam for further details.

For example, ssl:port=443:privateKey=/etc/ssl/server.pem:extraCertChain=/etc/ssl/chain.pem:sslmethod=SSLv3_METHOD:dhParameters=dh_param_1024.pem.

UNIX Supported arguments: address, mode, backlog, lockfile. address gives a filesystem path to listen
on with a UNIX domain socket server. mode (optional) gives the filesystem permission/mode (in octal) to apply
to that socket. lockfile enables use of a separate lock file to prove the server is still running.

For example, unix:address=/var/run/web.sock:lockfile=1.

systemd Supported arguments: domain, index. domain indicates which socket domain the inherited file descrip-
tor belongs to (eg INET, INET6). index indicates an offset into the array of file descriptors which have been
inherited from systemd.

For example, systemd:domain=INET6:index=3.

See also Deploying Twisted with systemd.

2.1.21 Components: Interfaces and Adapters

Object oriented programming languages allow programmers to reuse portions of existing code by creating new
“classes” of objects which subclass another class. When a class subclasses another, it is said to inherit all of its
behaviour. The subclass can then “override” and “extend” the behavior provided to it by the superclass. Inheritance is
very useful in many situations, but because it is so convenient to use, often becomes abused in large software systems,
especially when multiple inheritance is involved. One solution is to use delegation instead of “inheritance” where ap-
propriate. Delegation is simply the act of asking another object to perform a task for an object. To support this design
pattern, which is often referred to as the components pattern because it involves many small interacting components,
interfaces and adapters were created by the Zope 3 team.

“Interfaces” are simply markers which objects can use to say “I implement this interface”. Other objects may then
make requests like “Please give me an object which implements interface X for object type Y”. Objects which imple-
ment an interface for another object type are called “adapters”.

The superclass-subclass relationship is said to be an is-a relationship. When designing object hierarchies, object
modellers use subclassing when they can say that the subclass is the same class as the superclass. For example:

class Shape:
sideLength = 0
def getSideLength(self):

return self.sideLength

def setSideLength(self, sideLength):
self.sideLength = sideLength

def area(self):
raise NotImplementedError, "Subclasses must implement area"

class Triangle(Shape):
def area(self):

return (self.sideLength * self.sideLength) / 2

class Square(Shape):
def area(self):

return self.sideLength * self.sideLength

In the above example, a Triangle is-a Shape, so it subclasses Shape, and a Square is-a Shape, so it also subclasses
Shape.

2.1. Developer Guides 179

http://www.openssl.org/docs/apps/dhparam.html
http://www.openssl.org/docs/apps/dhparam.html

Twisted Documentation, Release 16.0.0

However, subclassing can get complicated, especially when Multiple Inheritance enters the picture. Multiple Inheri-
tance allows a class to inherit from more than one base class. Software which relies heavily on inheritance often ends
up having both very wide and very deep inheritance trees, meaning that one class inherits from many superclasses
spread throughout the system. Since subclassing with Multiple Inheritance means implementation inheritance, locat-
ing a method’s actual implementation and ensuring the correct method is actually being invoked becomes a challenge.
For example:

class Area:
sideLength = 0
def getSideLength(self):

return self.sideLength

def setSideLength(self, sideLength):
self.sideLength = sideLength

def area(self):
raise NotImplementedError, "Subclasses must implement area"

class Color:
color = None
def setColor(self, color):

self.color = color

def getColor(self):
return self.color

class Square(Area, Color):
def area(self):

return self.sideLength * self.sideLength

The reason programmers like using implementation inheritance is because it makes code easier to read since the
implementation details of Area are in a separate place than the implementation details of Color. This is nice, because
conceivably an object could have a color but not an area, or an area but not a color. The problem, though, is that Square
is not really an Area or a Color, but has an area and color. Thus, we should really be using another object oriented
technique called composition, which relies on delegation rather than inheritance to break code into small reusable
chunks. Let us continue with the Multiple Inheritance example, though, because it is often used in practice.

What if both the Color and the Area base class defined the same method, perhaps calculate? Where would
the implementation come from? The implementation that is located for Square().calculate() depends on
the method resolution order, or MRO, and can change when programmers change seemingly unrelated things by
refactoring classes in other parts of the system, causing obscure bugs. Our first thought might be to change the calculate
method name to avoid name clashes, to perhaps calculateArea and calculateColor. While explicit, this
change could potentially require a large number of changes throughout a system, and is error-prone, especially when
attempting to integrate two systems which you didn’t write.

Let’s imagine another example. We have an electric appliance, say a hair dryer. The hair dryer is American voltage.
We have two electric sockets, one of them an American 120 Volt socket, and one of them a United Kingdom 240
Volt socket. If we plug the hair dryer into the 240 Volt socket, it is going to expect 120 Volt current and errors will
result. Going back and changing the hair dryer to support both plug120Volt and plug240Volt methods would
be tedious, and what if we decided we needed to plug the hair dryer into yet another type of socket? For example:

class HairDryer:
def plug(self, socket):

if socket.voltage() == 120:
print "I was plugged in properly and am operating."

else:
print "I was plugged in improperly and "
print "now you have no hair dryer any more."

180 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

class AmericanSocket:
def voltage(self):

return 120

class UKSocket:
def voltage(self):

return 240

Given these classes, the following operations can be performed:

>>> hd = HairDryer()
>>> am = AmericanSocket()
>>> hd.plug(am)
I was plugged in properly and am operating.
>>> uk = UKSocket()
>>> hd.plug(uk)
I was plugged in improperly and
now you have no hair dryer any more.

We are going to attempt to solve this problem by writing an Adapter for the UKSocket which converts the voltage
for use with an American hair dryer. An Adapter is a class which is constructed with one and only one argument, the
“adaptee” or “original” object. In this example, we will show all code involved for clarity:

class AdaptToAmericanSocket:
def __init__(self, original):

self.original = original

def voltage(self):
return self.original.voltage() / 2

Now, we can use it as so:

>>> hd = HairDryer()
>>> uk = UKSocket()
>>> adapted = AdaptToAmericanSocket(uk)
>>> hd.plug(adapted)
I was plugged in properly and am operating.

So, as you can see, an adapter can ‘override’ the original implementation. It can also ‘extend’ the interface of the
original object by providing methods the original object did not have. Note that an Adapter must explicitly delegate
any method calls it does not wish to modify to the original, otherwise the Adapter cannot be used in places where
the original is expected. Usually this is not a problem, as an Adapter is created to conform an object to a particular
interface and then discarded.

Interfaces and Components in Twisted code

Adapters are a useful way of using multiple classes to factor code into discrete chunks. However, they are not very
interesting without some more infrastructure. If each piece of code which wished to use an adapted object had to
explicitly construct the adapter itself, the coupling between components would be too tight. We would like to achieve
“loose coupling”, and this is where twisted.python.components comes in.

First, we need to discuss Interfaces in more detail. As we mentioned earlier, an Interface is nothing more than a class
which is used as a marker. Interfaces should be subclasses of zope.interface.Interface, and have a very
odd look to python programmers not used to them:

from zope.interface import Interface

2.1. Developer Guides 181

https://twistedmatrix.com/documents/16.0.0/api/twisted.python.components.html

Twisted Documentation, Release 16.0.0

class IAmericanSocket(Interface):
def voltage():

"""
Return the voltage produced by this socket object, as an integer.
"""

Notice how it looks just like a regular class definition, other than inheriting from Interface? However, the method
definitions inside the class block do not have any method body! Since Python does not have any native language-level
support for Interfaces like Java does, this is what distinguishes an Interface definition from a Class.

Now that we have a defined Interface, we can talk about objects using terms like this: “The AmericanSocket
class implements the IAmericanSocket interface” and “Please give me an object which adapts UKSocket to the
IAmericanSocket interface”. We can make declarations about what interfaces a certain class implements, and we
can request adapters which implement a certain interface for a specific class.

Let’s look at how we declare that a class implements an interface:

from zope.interface import implementer

@implementer(IAmericanSocket)
class AmericanSocket:

def voltage(self):
return 120

So, to declare that a class implements an interface, we simply decorate it with zope.interface.implementer.

Now, let’s say we want to rewrite the AdaptToAmericanSocket class as a real adapter. In this case we also
specify it as implementing IAmericanSocket:

from zope.interface import implementer

@implementer(IAmericanSocket)
class AdaptToAmericanSocket:

def __init__(self, original):
"""
Pass the original UKSocket object as original
"""
self.original = original

def voltage(self):
return self.original.voltage() / 2

Notice how we placed the implements declaration on this adapter class. So far, we have not achieved anything by
using components other than requiring us to type more. In order for components to be useful, we must use the com-
ponent registry. Since AdaptToAmericanSocket implements IAmericanSocket and regulates the voltage
of a UKSocket object, we can register AdaptToAmericanSocket as an IAmericanSocket adapter for the
UKSocket class. It is easier to see how this is done in code than to describe it:

from zope.interface import Interface, implementer
from twisted.python import components

class IAmericanSocket(Interface):
def voltage():

"""
Return the voltage produced by this socket object, as an integer.
"""

@implementer(IAmericanSocket)
class AmericanSocket:

182 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

def voltage(self):
return 120

class UKSocket:
def voltage(self):

return 240

@implementer(IAmericanSocket)
class AdaptToAmericanSocket:

def __init__(self, original):
self.original = original

def voltage(self):
return self.original.voltage() / 2

components.registerAdapter(
AdaptToAmericanSocket,
UKSocket,
IAmericanSocket)

Now, if we run this script in the interactive interpreter, we can discover a little more about how to use components.
The first thing we can do is discover whether an object implements an interface or not:

>>> IAmericanSocket.implementedBy(AmericanSocket)
True
>>> IAmericanSocket.implementedBy(UKSocket)
False
>>> am = AmericanSocket()
>>> uk = UKSocket()
>>> IAmericanSocket.providedBy(am)
True
>>> IAmericanSocket.providedBy(uk)
False

As you can see, the AmericanSocket instance claims to implement IAmericanSocket, but the UKSocket
does not. If we wanted to use the HairDryer with the AmericanSocket, we could know that it would be safe to
do so by checking whether it implements IAmericanSocket. However, if we decide we want to use HairDryer
with a UKSocket instance, we must adapt it to IAmericanSocket before doing so. We use the interface object
to do this:

>>> IAmericanSocket(uk)
<__main__.AdaptToAmericanSocket instance at 0x1a5120>

When calling an interface with an object as an argument, the interface looks in the adapter registry for an adapter which
implements the interface for the given instance’s class. If it finds one, it constructs an instance of the Adapter class,
passing the constructor the original instance, and returns it. Now the HairDryer can safely be used with the adapted
UKSocket . But what happens if we attempt to adapt an object which already implements IAmericanSocket?
We simply get back the original instance:

>>> IAmericanSocket(am)
<__main__.AmericanSocket instance at 0x36bff0>

So, we could write a new “smart” HairDryer which automatically looked up an adapter for the socket you tried to
plug it into:

class HairDryer:
def plug(self, socket):

adapted = IAmericanSocket(socket)

2.1. Developer Guides 183

Twisted Documentation, Release 16.0.0

assert adapted.voltage() == 120, "BOOM"
print "I was plugged in properly and am operating"

Now, if we create an instance of our new “smart” HairDryer and attempt to plug it in to various sockets, the
HairDryer will adapt itself automatically depending on the type of socket it is plugged in to:

>>> am = AmericanSocket()
>>> uk = UKSocket()
>>> hd = HairDryer()
>>> hd.plug(am)
I was plugged in properly and am operating
>>> hd.plug(uk)
I was plugged in properly and am operating

Voila; the magic of components.

Components and Inheritance

If you inherit from a class which implements some interface, and your new subclass declares that it implements another
interface, the implements will be inherited by default.

For example, pb.Root is a class which implements IPBRoot. This interface indicates that an object has remotely-
invokable methods and can be used as the initial object served by a new Broker instance. It has an implements
setting like:

from zope.interface import implementer

@implementer(IPBRoot)
class Root(Referenceable):

pass

Suppose you have your own class which implements your IMyInterface interface:

from zope.interface import implementer, Interface

class IMyInterface(Interface):
pass

@implementer(IMyInterface)
class MyThing:

pass

Now if you want to make this class inherit from pb.Root, the interfaces code will automatically determine that it
also implements IPBRoot:

from twisted.spread import pb
from zope.interface import implementer, Interface

class IMyInterface(Interface):
pass

@implementer(IMyInterface)
class MyThing(pb.Root):

pass

>>> from twisted.spread.flavors import IPBRoot
>>> IPBRoot.implementedBy(MyThing)
True

184 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.Root.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.IPBRoot.html

Twisted Documentation, Release 16.0.0

If you want MyThing to inherit from pb.Root but not implement IPBRoot like pb.Root does, use
@implementer_only:

from twisted.spread import pb
from zope.interface import implementer_only, Interface

class IMyInterface(Interface):
pass

@implementer_only(IMyInterface)
class MyThing(pb.Root):

pass

>>> from twisted.spread.pb import IPBRoot
>>> IPBRoot.implementedBy(MyThing)
False

2.1.22 Cred: Pluggable Authentication

Goals

Cred is a pluggable authentication system for servers. It allows any number of network protocols to connect and
authenticate to a system, and communicate to those aspects of the system which are meaningful to the specific protocol.
For example, Twisted’s POP3 support passes a “username and password” set of credentials to get back a mailbox for
the specified email account. IMAP does the same, but retrieves a slightly different view of the same mailbox, enabling
those features specific to IMAP which are not available in other mail protocols.

Cred is designed to allow both the backend implementation of the business logic - called the avatar - and the authenti-
cation database - called the credential checker - to be decided during deployment. For example, the same POP3 server
should be able to authenticate against the local UNIX password database or an LDAP server without having to know
anything about how or where mail is stored.

To sketch out how this works - a “Realm” corresponds to an application domain and is in charge of avatars, which are
network-accessible business logic objects. To connect this to an authentication database, a top-level object called a
Portal stores a realm, and a number of credential checkers. Something that wishes to log in, such as a Protocol , stores
a reference to the portal. Login consists of passing credentials and a request interface (e.g. POP3’s IMailbox) to the
portal. The portal passes the credentials to the appropriate credential checker, which returns an avatar ID. The ID is
passed to the realm, which returns the appropriate avatar. For a Portal that has a realm that creates mailbox objects
and a credential checker that checks /etc/passwd, login consists of passing in a username/password and the IMailbox
interface to the portal. The portal passes this to the /etc/passwd credential checker, gets back a avatar ID corresponding
to an email account, passes that to the realm and gets back a mailbox object for that email account.

Putting all this together, here’s how a login request will typically be processed:

2.1. Developer Guides 185

https://twistedmatrix.com/documents/16.0.0/api/twisted.cred.portal.Portal.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.protocol.Protocol.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.mail.pop3.IMailbox.html

Twisted Documentation, Release 16.0.0

Cred objects

The Portal

This is the core of login, the point of integration between all the objects in the cred system. There is one concrete
implementation of Portal, and no interface - it does a very simple task. A Portal associates one (1) Realm with a
collection of CredentialChecker instances. (More on those later.)

If you are writing a protocol that needs to authenticate against something, you will need a reference to a Portal, and to
nothing else. This has only 2 methods -

• login (credentials, mind, *interfaces)

The docstring is quite expansive (see twisted.cred.portal), but in brief, this is what you call when you need to
call in order to connect a user to the system. Typically you only pass in one interface, and the mind is None .
The interfaces are the possible interfaces the returned avatar is expected to implement, in order of preference.
The result is a deferred which fires a tuple of:

– interface the avatar implements (which was one of the interfaces passed in the *interfaces tuple)

– an object that implements that interface (an avatar)

– logout, a 0-argument callable which disconnects the connection that was established by this call to login

The logout method has to be called when the avatar is logged out. For POP3 this means when the protocol is
disconnected or logged out, etc..

• registerChecker (checker, *credentialInterfaces)

186 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.cred.portal.Portal.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.cred.portal.Portal.login.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.cred.portal.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.cred.portal.Portal.registerChecker.html

Twisted Documentation, Release 16.0.0

which adds a CredentialChecker to the portal. The optional list of interfaces are interfaces of credentials that the
checker is able to check.

The CredentialChecker

This is an object implementing ICredentialsChecker which resolves some credentials to an avatar ID.

Whether the credentials are stored in an in-memory data structure, an Apache-style htaccess file, a UNIX password
database, an SSH key database, or any other form, an implementation of ICredentialsChecker is how this data
is connected to cred.

A credential checker stipulates some requirements of the credentials it can check by specifying a credentialInterfaces
attribute, which is a list of interfaces. Credentials passed to its requestAvatarId method must implement one of those
interfaces.

For the most part, these things will just check usernames and passwords and produce the username as the result, but
hopefully we will be seeing some public-key, challenge-response, and certificate based credential checker mechanisms
soon.

A credential checker should raise an error if it cannot authenticate the user, and return
twisted.cred.checkers.ANONYMOUS for anonymous access.

The Credentials

Oddly enough, this represents some credentials that the user presents. Usually this will just be a small static blob of
data, but in some cases it will actually be an object connected to a network protocol. For example, a username/password
pair is static, but a challenge/response server is an active state-machine that will require several method calls in order
to determine a result.

Twisted comes with a number of credentials interfaces and implementations in the twisted.cred.credentials module,
such as IUsernamePassword and IUsernameHashedPassword .

The Realm

A realm is an interface which connects your universe of “business objects” to the authentication system.

IRealm is another one-method interface:

• requestAvatar (avatarId, mind, *interfaces)

This method will typically be called from ‘Portal.login’. The avatarId is the one returned by a CredentialChecker.

Note: Note that avatarId must always be a string. In particular, do not use unicode strings. If international-
ized support is needed, it is recommended to use UTF-8, and take care of decoding in the realm.

The important thing to realize about this method is that if it is being called, the user has already authenticated
. Therefore, if possible, the Realm should create a new user if one does not already exist whenever possible.
Of course, sometimes this will be impossible without more information, and that is the case that the interfaces
argument is for.

Since requestAvatar should be called from a Deferred callback, it may return a Deferred or a synchronous result.

2.1. Developer Guides 187

https://twistedmatrix.com/documents/16.0.0/api/twisted.cred.checkers.ICredentialsChecker.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.cred.credentials.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.cred.credentials.IUsernamePassword.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.cred.credentials.IUsernameHashedPassword.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.cred.portal.IRealm.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.cred.portal.IRealm.requestAvatar.html

Twisted Documentation, Release 16.0.0

The Avatar

An avatar is a business logic object for a specific user. For POP3, it’s a mailbox, for a first-person-shooter it’s the object
that interacts with the game, the actor as it were. Avatars are specific to an application, and each avatar represents a
single “user” .

The Mind

As mentioned before, the mind is usually None , so you can skip this bit if you want.

Masters of Perspective Broker already know this object as the ill-named “client object” . There is no “mind” class,
or even interface, but it is an object which serves an important role - any notifications which are to be relayed to an
authenticated client are passed through a ‘mind’. In addition, it allows passing more information to the realm during
login in addition to the avatar ID.

The name may seem rather unusual, but considering that a Mind is representative of the entity on the “other end” of a
network connection that is both receiving updates and issuing commands, I believe it is appropriate.

Although many protocols will not use this, it serves an important role. It is provided as an argument both to the
Portal and to the Realm, although a CredentialChecker should interact with a client program exclusively through a
Credentials instance.

Unlike the original Perspective Broker “client object” , a Mind’s implementation is most often dictated by the protocol
that is connecting rather than the Realm. A Realm which requires a particular interface to issue notifications will need
to wrap the Protocol’s mind implementation with an adapter in order to get one that conforms to its expected interface
- however, Perspective Broker will likely continue to use the model where the client object has a pre-specified remote
interface.

(If you don’t quite understand this, it’s fine. It’s hard to explain, and it’s not used in simple usages of cred, so feel free
to pass None until you find yourself requiring something like this.)

Responsibilities

Server protocol implementation

The protocol implementor should define the interface the avatar should implement, and design the protocol to have
a portal attached. When a user logs in using the protocol, a credential object is created, passed to the portal, and an
avatar with the appropriate interface is requested. When the user logs out or the protocol is disconnected, the avatar
should be logged out.

The protocol designer should not hardcode how users are authenticated or the realm implemented. For example, a
POP3 protocol implementation would require a portal whose realm returns avatars implementing IMailbox and whose
credential checker accepts username/password credentials, but that is all. Here’s a sketch of how the code might look
- note that USER and PASS are the protocol commands used to login, and the DELE command can only be used after
you are logged in:

pop3_server.py

Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

from zope.interface import Interface

from twisted.protocols import basic
from twisted.python import log
from twisted.cred import credentials, error

188 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

from twisted.internet import defer

class IMailbox(Interface):
"""
Interface specification for mailbox.
"""
def deleteMessage(index):

pass

class POP3(basic.LineReceiver):
...
def __init__(self, portal):

self.portal = portal

def do_DELE(self, i):
uses self.mbox, which is set after login
i = int(i)-1
self.mbox.deleteMessage(i)
self.successResponse()

def do_USER(self, user):
self._userIs = user
self.successResponse('USER accepted, send PASS')

def do_PASS(self, password):
if self._userIs is None:

self.failResponse("USER required before PASS")
return

user = self._userIs
self._userIs = None
d = defer.maybeDeferred(self.authenticateUserPASS, user, password)
d.addCallback(self._cbMailbox, user)

def authenticateUserPASS(self, user, password):
if self.portal is not None:

return self.portal.login(
credentials.UsernamePassword(user, password),
None,
IMailbox

)
raise error.UnauthorizedLogin()

def _cbMailbox(self, ial, user):
interface, avatar, logout = ial

if interface is not IMailbox:
self.failResponse('Authentication failed')
log.err("_cbMailbox() called with an interface other than IMailbox")
return

self.mbox = avatar
self._onLogout = logout
self.successResponse('Authentication succeeded')
log.msg("Authenticated login for " + user)

2.1. Developer Guides 189

Twisted Documentation, Release 16.0.0

Application implementation

The application developer can implement realms and credential checkers. For example, they might implement a realm
that returns IMailbox implementing avatars, using MySQL for storage, or perhaps a credential checker that uses LDAP
for authentication. In the following example, the Realm for a simple remote object service (using Twisted’s Perspective
Broker protocol) is implemented:

from twisted.spread import pb
from twisted.cred.portal import IRealm

class SimplePerspective(pb.Avatar):

def perspective_echo(self, text):
print 'echoing',text
return text

def logout(self):
print self, "logged out"

class SimpleRealm:
implements(IRealm)

def requestAvatar(self, avatarId, mind, *interfaces):
if pb.IPerspective in interfaces:

avatar = SimplePerspective()
return pb.IPerspective, avatar, avatar.logout

else:
raise NotImplementedError("no interface")

Deployment

Deployment involves tying together a protocol, an appropriate realm and a credential checker. For example, a POP3
server can be constructed by attaching to it a portal that wraps the MySQL-based realm and an /etc/passwd credential
checker, or perhaps the LDAP credential checker if that is more useful. The following example shows how the
SimpleRealm in the previous example is deployed using an in-memory credential checker:

from twisted.spread import pb
from twisted.internet import reactor
from twisted.cred.portal import Portal
from twisted.cred.checkers import InMemoryUsernamePasswordDatabaseDontUse

portal = Portal(SimpleRealm())
checker = InMemoryUsernamePasswordDatabaseDontUse()
checker.addUser("guest", "password")
portal.registerChecker(checker)
reactor.listenTCP(9986, pb.PBServerFactory(portal))
reactor.run()

Cred plugins

Authentication with cred plugins

Cred offers a plugin architecture for authentication methods. The primary API for this architecture is the command-
line; the plugins are meant to be specified by the end-user when deploying a TAP (twistd plugin).

190 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

For more information on writing a twistd plugin and using cred plugins for your application, please refer to the Writing
a twistd plugin document.

Building a cred plugin

To build a plugin for cred, you should first define an authType , a short one-word string that defines your plugin
to the command-line. Once you have this, the convention is to create a file named myapp_plugins.py in the
twisted.plugins module path.

Below is an example file structure for an application that defines such a plugin:

• MyApplication/

– setup.py

– myapp/

* __init__.py

* cred.py

* server.py

– twisted/

* plugins/

· myapp_plugins.py

Once you have created this structure within your application, you can create the code for your cred plugin by building
a factory class which implements ICheckerFactory . These factory classes should not consist of a tremendous amount
of code. Most of the real application logic should reside in the cred checker itself. (For help on building those, scroll
up.)

The core purpose of the CheckerFactory is to translate an argstring , which is passed on the command line, into a
suitable set of initialization parameters for a Checker class. In most cases this should be little more than constructing
a dictionary or a tuple of arguments, then passing them along to a new checker instance.

from zope.interface import implements

from twisted import plugin
from twisted.cred.strcred import ICheckerFactory
from myapp.cred import SpecialChecker

class SpecialCheckerFactory(object):
"""
A checker factory for a specialized (fictional) API.
"""
The class needs to implement both of these interfaces
for the plugin system to find our factory.
implements(ICheckerFactory, plugin.IPlugin)

This tells AuthOptionsMixin how to find this factory.
authType = "special"

This is a one-line explanation of what arguments, if any,
your particular cred plugin requires at the command-line.
argStringFormat = "A colon-separated key=value list."

This help text can be multiple lines. It will be displayed
when someone uses the "--help-auth-type special" command.

2.1. Developer Guides 191

https://twistedmatrix.com/documents/16.0.0/api/twisted.plugins.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.cred.strcred.ICheckerFactory.html

Twisted Documentation, Release 16.0.0

authHelp = """Some help text goes here ..."""

This will be called once per command-line.
def generateChecker(self, argstring=""):

argdict = dict((x.split('=') for x in argstring.split(':')))
return SpecialChecker(**argdict)

We need to instantiate our class for the plugin to work.
theSpecialCheckerFactory = SpecialCheckerFactory()

For more information on how your plugin can be used in your application (and by other application developers), please
see the Writing a twistd plugin document.

Conclusion

After reading through this tutorial, you should be able to

• Understand how the cred architecture applies to your application

• Integrate your application with cred’s object model

• Deploy an application that uses cred for authentication

• Allow your users to use command-line authentication plugins

2.1.23 The Twisted Plugin System

The purpose of this guide is to describe the preferred way to write extensible Twisted applications (and consequently,
also to describe how to extend applications written in such a way). This extensibility is achieved through the definition
of one or more APIs and a mechanism for collecting code plugins which implement this API to provide some additional
functionality. At the base of this system is the twisted.plugin module.

Making an application extensible using the plugin system has several strong advantages over other techniques:

• It allows third-party developers to easily enhance your software in a way that is loosely coupled: only the plugin
API is required to remain stable.

• It allows new plugins to be discovered flexibly. For example, plugins can be loaded and saved when a program
is first run, or re-discovered each time the program starts up, or they can be polled for repeatedly at runtime
(allowing the discovery of new plugins installed after the program has started).

Writing Extensible Programs

Taking advantage of twisted.plugin is a two step process:

1. Define an interface which plugins will be required to implement. This is done using the zope.interface package
in the same way one would define an interface for any other purpose.

A convention for defining interfaces is do so in a file named like ProjectName/projectname/iprojectname.py
. The rest of this document will follow that convention: consider the following interface definition be in
Matsim/matsim/imatsim.py , an interface definition module for a hypothetical material simulation pack-
age.

2. At one or more places in your program, invoke twisted.plugin.getPlugins and iterate over its result.

As an example of the first step, consider the following interface definition for a physical modelling system.

192 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.plugin.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.plugin.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.plugin.getPlugins.html

Twisted Documentation, Release 16.0.0

from zope.interface import Interface, Attribute

class IMaterial(Interface):
"""
An object with specific physical properties
"""
def yieldStress(temperature):

"""
Returns the pressure this material can support without
fracturing at the given temperature.

@type temperature: C{float}
@param temperature: Kelvins

@rtype: C{float}
@return: Pascals
"""

dielectricConstant = Attribute("""
@type dielectricConstant: C{complex}
@ivar dielectricConstant: The relative permittivity, with the
real part giving reflective surface properties and the
imaginary part giving the radio absorption coefficient.
""")

In another module, we might have a function that operates on objects providing the IMaterial interface:

def displayMaterial(m):
print 'A material with yield stress %s at 500 K' % (m.yieldStress(500),)
print 'Also a dielectric constant of %s.' % (m.dielectricConstant,)

The last piece of required code is that which collects IMaterial providers and passes them to the
displayMaterial function.

from twisted.plugin import getPlugins
from matsim import imatsim

def displayAllKnownMaterials():
for material in getPlugins(imatsim.IMaterial):

displayMaterial(material)

Third party developers may now contribute different materials to be used by this modelling system by implementing
one or more plugins for the IMaterial interface.

Extending an Existing Program

The above code demonstrates how an extensible program might be written using Twisted’s plugin system. How do we
write plugins for it, though? Essentially, we create objects which provide the required interface and then make them
available at a particular location. Consider the following example.

from zope.interface import implements
from twisted.plugin import IPlugin
from matsim import imatsim

class SimpleMaterial(object):
implements(IPlugin, imatsim.IMaterial)

def __init__(self, yieldStressFactor, dielectricConstant):

2.1. Developer Guides 193

Twisted Documentation, Release 16.0.0

self._yieldStressFactor = yieldStressFactor
self.dielectricConstant = dielectricConstant

def yieldStress(self, temperature):
return self._yieldStressFactor * temperature

steelPlate = SimpleMaterial(2.06842719e11, 2.7 + 0.2j)
brassPlate = SimpleMaterial(1.03421359e11, 1.4 + 0.5j)

steelPlate and brassPlate now provide both IPlugin and IMaterial . All that remains is to make this
module available at an appropriate location. For this, there are two options. The first of these is primarily useful
during development: if a directory which has been added to sys.path (typically by adding it to the PYTHONPATH
environment variable) contains a directory named twisted/plugins/ , each .py file in that directory will be
loaded as a source of plugins. This directory must not be a Python package: including __init__.py will cause
the directory to be skipped and no plugins loaded from it. Second, each module in the installed version of Twisted’s
twisted.plugins package will also be loaded as a source of plugins.

Once this plugin is installed in one of these two ways, displayAllKnownMaterials can be run and we will see
two pairs of output: one for a steel plate and one for a brass plate.

Alternate Plugin Packages

getPlugins takes one additional argument not mentioned above. If passed in, the 2nd argument should be a module
or package to be used instead of twisted.plugins as the plugin meta-package. If you are writing a plugin for a
Twisted interface, you should never need to pass this argument. However, if you have developed an interface of your
own, you may want to mandate that plugins for it are installed in your own plugins package, rather than in Twisted’s.

You may want to support yourproject/plugins/ directories for ease of development. To do so, you should
make yourproject/plugins/__init__.py contain at least the following lines.

from twisted.plugin import pluginPackagePaths
__path__.extend(pluginPackagePaths(__name__))
__all__ = []

The key behavior here is that interfaces are essentially paired with a particular plugin package. If plugins are installed
in a different package than the one the code which relies on the interface they provide, they will not be found when
the application goes to load them.

Plugin Caching

In the course of using the Twisted plugin system, you may notice dropin.cache files appearing at various locations.
These files are used to cache information about what plugins are present in the directory which contains them. At times,
this cached information may become out of date. Twisted uses the mtimes of various files involved in the plugin system
to determine when this cache may have become invalid. Twisted will try to re-write the cache each time it tries to use
it but finds it out of date.

For a site-wide install, it may not (indeed, should not) be possible for applications running as normal users to rewrite
the cache file. While these applications will still run and find correct plugin information, they may run more slowly
than they would if the cache was up to date, and they may also report exceptions if certain plugins have been removed
but which the cache still references. For these reasons, when installing or removing software which provides Twisted
plugins, the site administrator should be sure the cache is regenerated. Well-behaved package managers for such
software should take this task upon themselves, since it is trivially automatable. The canonical way to regenerate the
cache is to run the following Python code:

194 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.plugin.IPlugin.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.plugin.getPlugins.html

Twisted Documentation, Release 16.0.0

from twisted.plugin import IPlugin, getPlugins
list(getPlugins(IPlugin))

As mentioned, it is normal for exceptions to be raised once here if plugins have been removed.

Further Reading

• Components: Interfaces and Adapters

2.1.24 The Basics

Application

Twisted programs usually work with twisted.application.service.Application. This class usually holds all persistent
configuration of a running server, such as:

• ports to bind to,

• places where connections to must be kept or attempted,

• periodic actions to do,

• and almost everything else to do with your Application.

It is the root object in a tree of services implementing twisted.application.service.IService.

Other howtos describe how to write custom code for Applications, but this one describes how to use already
written code (which can be part of Twisted or from a third-party Twisted plugin developer). The Twisted distribution
comes with an important tool to deal with Applications: twistd(1).

Applications are just Python objects, which can be created and manipulated in the same ways as any other object.

twistd

The Twisted Daemon is a program that knows how to run Applications. Strictly speaking, twistd is not nec-
essary. Fetching the application, getting the IService component, calling startService(), scheduling
stopService() when the reactor shuts down, and then calling reactor.run() could be done manually.

However, twistd supplies many options which are highly useful for program set up:

• choosing a reactor (for more on reactors, see Choosing a Reactor),

• logging configuration (see the logger documentation for more),

• daemonizing (forking to the background),

• and more.

twistd supports all Applications mentioned above – and an additional one. Sometimes it is convenient to write the
code for building a class in straight Python. One big source of such Python files is the examples directory. When a
straight Python file which defines an Application object called application is used, use the -y option.

When twistd runs, it records its process id in a twistd.pid file (this can be configured via a command line
switch). In order to shutdown the twistd process, kill that pid. The usual way to do this would be:

kill `cat twistd.pid`

2.1. Developer Guides 195

https://twistedmatrix.com/documents/16.0.0/api/twisted.application.service.Application.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.application.service.Application.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.application.service.IService.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.application.service.Application.html

Twisted Documentation, Release 16.0.0

To prevent twistd from daemonizing, you can pass it the --no-daemon option (or -n, in conjunction with other
short options).

As always, the gory details are in the manual page.

OS Integration

If you have an Application that runs with twistd, you can deploy it on RedHat Linux or Debian GNU/Linux based
systems using the tap2deb or tap2rpm tools. These take a Twisted Application file (of any of the sup-
ported formats — Python source, XML or pickle), and build a Debian or RPM package (respectively) that installs
the Application as a system service. The package includes the Application file, a default /etc/init.d/
script that starts and stops the process with twistd, and post-installation scripts that configure the Application to
be run in the appropriate init levels.

Note: tap2rpm and tap2deb do not package your entire application and dependent code, just the Twisted Ap-
plication file. You will need to find some other way to package your Python code, such as distutils‘ bdist_rpm
command.

For more savvy users, these tools also generate the source package, allowing you to modify and polish things which
automated software cannot detect (such as dependencies or relationships to virtual packages).

2.1.25 Using the Twisted Application Framework

Introduction

Audience

The target audience of this document is a Twisted user who wants to deploy a significant amount of Twisted code in
a re-usable, standard and easily configurable fashion. A Twisted user who wishes to use the Application framework
needs to be familiar with developing Twisted servers and/or clients.

Goals

• To introduce the Twisted Application infrastructure.

• To explain how to deploy your Twisted application using .tac files and twistd.

• To outline the existing Twisted services.

Overview

The Twisted Application infrastructure takes care of running and stopping your application. Using this infrastructure
frees you from from having to write a large amount of boilerplate code by hooking your application into existing tools
that manage daemonization, logging, choosing a reactor and more.

The major tool that manages Twisted applications is a command-line utility called twistd. twistd is cross plat-
form, and is the recommended tool for running Twisted applications.

The core component of the Twisted Application infrastructure is the twisted.application.service.Application object
– an object which represents your application. However, Application doesn’t provide anything that you’d want to
manipulate directly. Instead, Application acts as a container of any “Services” (objects implementing IService) that
your application provides. Most of your interaction with the Application infrastructure will be done through Services.

196 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.application.service.Application.html
http://docs.python.org/library/distutils.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.application.service.Application.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.application.service.IService.html

Twisted Documentation, Release 16.0.0

By “Service”, we mean anything in your application that can be started and stopped. Typical services include web
servers, FTP servers and SSH clients. Your Application object can contain many services, and can even contain
structured hierarchies of Services using MultiService or your own custom IServiceCollection implementations. You
will most likely want to use these to manage Services which are dependent on other Services. For example, a proxying
Twisted application might want its server Service to only start up after the associated Client service.

An IService has two basic methods, startService() which is used to start the service, and stopService()
which is used to stop the service. The latter can return a Deferred, indicating service shutdown is not over until the
result fires. For example:

from twisted.internet import reactor
from twisted.application import service
from somemodule import EchoFactory

class EchoService(service.Service):
def __init__(self, portNum):

self.portNum = portNum

def startService(self):
self._port = reactor.listenTCP(self.portNum, EchoFactory())

def stopService(self):
return self._port.stopListening()

See Writing Servers for an explanation of EchoFactory and listenTCP.

Using Services and Application

twistd and tac

To handle start-up and configuration of your Twisted application, the Twisted Application infrastructure uses .tac
files. .tac are Python files which configure an Application object and assign this object to the top-level variable
“application” .

The following is a simple example of a .tac file:

service.tac

You can run this .tac file directly with:
twistd -ny service.tac

"""
This is an example .tac file which starts a webserver on port 8080 and
serves files from the current working directory.

The important part of this, the part that makes it a .tac file, is
the final root-level section, which sets up the object called 'application'
which twistd will look for
"""

import os
from twisted.application import service, internet
from twisted.web import static, server

def getWebService():
"""
Return a service suitable for creating an application object.

2.1. Developer Guides 197

https://twistedmatrix.com/documents/16.0.0/api/twisted.application.service.MultiService.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.application.service.IServiceCollection.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.application.service.IService.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.application.service.Application.html

Twisted Documentation, Release 16.0.0

This service is a simple web server that serves files on port 8080 from
underneath the current working directory.
"""
create a resource to serve static files
fileServer = server.Site(static.File(os.getcwd()))
return internet.TCPServer(8080, fileServer)

this is the core part of any tac file, the creation of the root-level
application object
application = service.Application("Demo application")

attach the service to its parent application
service = getWebService()
service.setServiceParent(application)

twistd is a program that runs Twisted applications using a .tac file. In its most simple form, it takes a sin-
gle argument -y and a tac file name. For example, you can run the above server with the command twistd -y
service.tac.

By default, twistd daemonizes and logs to a file called twistd.log. More usually, when debugging, you will
want your application to run in the foreground and log to the command line. To run the above file like this, use the
command twistd -noy service.tac.

For more information, see the twistd man page.

Customizing twistd logging

twistd logging can be customized using the command line. This requires that a log observer factory be importable.
Given a file named my.py with the code:

from twisted.python.log import FileLogObserver

def logger():
return FileLogObserver(open("/tmp/my.log", "w")).emit

Invoking twistd --logger my.logger ... will log to a file named /tmp/my.log (this simple example
could easily be replaced with use of the --logfile parameter to twistd).

Alternatively, the logging behavior can be customized through an API accessible from .tac files. The ILogObserver
component can be set on an Application in order to customize the default log observer that twistd will use.

Here is an example of how to use DailyLogFile, which rotates the log once per day.

from twisted.application.service import Application
from twisted.python.log import ILogObserver, FileLogObserver
from twisted.python.logfile import DailyLogFile

application = Application("myapp")
logfile = DailyLogFile("my.log", "/tmp")
application.setComponent(ILogObserver, FileLogObserver(logfile).emit)

Invoking twistd -y my.tac will create a log file at /tmp/my.log.

Services provided by Twisted

Twisted also provides pre-written IService implementations for common cases like listening on a TCP port, in the
twisted.application.internet module. Here’s a simple example of constructing a service that runs an echo server on

198 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.python.log.ILogObserver.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.python.logfile.DailyLogFile.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.application.service.IService.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.application.internet.html

Twisted Documentation, Release 16.0.0

TCP port 7001:

from twisted.application import internet, service
from somemodule import EchoFactory

port = 7001
factory = EchoFactory()

echoService = internet.TCPServer(port, factory) # create the service

Each of these services (except TimerService) has a corresponding “connect” or “listen” method on the reactor, and the
constructors for the services take the same arguments as the reactor methods. The “connect” methods are for clients
and the “listen” methods are for servers. For example, TCPServer corresponds to reactor.listenTCP and
TCPClient corresponds to reactor.connectTCP.

TCPServer

TCPClient

Services which allow you to make connections and listen for connections on TCP ports.

• listenTCP

• connectTCP

UNIXServer

UNIXClient

Services which listen and make connections over UNIX sockets.

• listenUNIX

• connectUNIX

SSLServer

SSLClient

Services which allow you to make SSL connections and run SSL servers.

• listenSSL

• connectSSL

UDPServer

A service which allows you to send and receive data over UDP.

• listenUDP

See also the UDP documentation.

UNIXDatagramServer

UNIXDatagramClient

Services which send and receive data over UNIX datagram sockets.

• listenUNIXDatagram

• connectUNIXDatagram

MulticastServer

A server for UDP socket methods that support multicast.

• listenMulticast

2.1. Developer Guides 199

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorTCP.listenTCP.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorTCP.connectTCP.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorUNIX.listenUNIX.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorUNIX.connectUNIX.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorSSL.listenSSL.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorSSL.connectSSL.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorUDP.listenUDP.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorUNIXDatagram.listenUNIXDatagram.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorUNIXDatagram.connectUNIXDatagram.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorMulticast.listenMulticast.html

Twisted Documentation, Release 16.0.0

TimerService

A service to periodically call a function.

• TimerService

Service Collection

IServiceCollection objects contain IService objects. IService objects can be added to IServiceCollection by calling
setServiceParent and detached by using disownServiceParent.

The standard implementation of IServiceCollection is MultiService, which also implements IService. MultiService
is useful for creating a new Service which combines two or more existing Services. For example, you could create a
DNS Service as a MultiService which has a TCP and a UDP Service as children.

from twisted.application import internet, service
from twisted.names import server, dns, hosts

port = 53

Create a MultiService, and hook up a TCPServer and a UDPServer to it as
children.
dnsService = service.MultiService()
hostsResolver = hosts.Resolver('/etc/hosts')
tcpFactory = server.DNSServerFactory([hostsResolver])
internet.TCPServer(port, tcpFactory).setServiceParent(dnsService)
udpFactory = dns.DNSDatagramProtocol(tcpFactory)
internet.UDPServer(port, udpFactory).setServiceParent(dnsService)

Create an application as normal
application = service.Application("DNSExample")

Connect our MultiService to the application, just like a normal service.
dnsService.setServiceParent(application)

2.1.26 Writing a twistd Plugin

This document describes adding subcommands to the twistd command, as a way to facilitate the deployment of
your applications. (This feature was added in Twisted 2.5)

The target audience of this document are those that have developed a Twisted application which needs a command
line-based deployment mechanism.

There are a few prerequisites to understanding this document:

• A basic understanding of the Twisted Plugin System (i.e., the twisted.plugin module) is necessary, however,
step-by-step instructions will be given. Reading The Twisted Plugin System is recommended, in particular the
“Extending an Existing Program” section.

• The Application infrastructure is used in twistd plugins; in particular, you should know how to expose your
program’s functionality as a Service.

• In order to parse command line arguments, the twistd plugin mechanism relies on
twisted.python.usage , which is documented in Using usage.Options .

200 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.application.internet.TimerService.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.application.service.IServiceCollection.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.application.service.IService.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.application.service.IService.setServiceParent.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.application.service.IService.disownServiceParent.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.application.service.MultiService.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.plugin.html

Twisted Documentation, Release 16.0.0

Goals

After reading this document, the reader should be able to expose their Service-using application as a subcommand of
twistd , taking into consideration whatever was passed on the command line.

Alternatives to twistd plugins

The major alternative to the twistd plugin mechanism is the .tac file, which is a simple script to be used with
the twistd -y/--python parameter. The twistd plugin mechanism exists to offer a more extensible command-
line-driven interface to your application. For more information on .tac files, see the document Using the Twisted
Application Framework .

Creating the plugin

The following directory structure is assumed of your project:

• MyProject - Top level directory

– myproject - Python package

* __init__.py

During development of your project, Twisted plugins can be loaded from a special directory in your project, as-
suming your top level directory ends up in sys.path. Create a directory named twisted containing a directory
named plugins , and add a file named myproject_plugin.py to it. This file will contain your plugin. Note
that you should not add any __init__.py files to this directory structure, and the plugin file should not be named
myproject.py (because that would conflict with your project’s module name).

In this file, define an object which provides the interfaces twisted.plugin.IPlugin and
twisted.application.service.IServiceMaker .

The tapname attribute of your IServiceMaker provider will be used as the subcommand name in a command like
twistd [subcommand] [args...] , and the options attribute (which should be a usage.Options subclass)
will be used to parse the given args.

from zope.interface import implements

from twisted.python import usage
from twisted.plugin import IPlugin
from twisted.application.service import IServiceMaker
from twisted.application import internet

from myproject import MyFactory

class Options(usage.Options):
optParameters = [["port", "p", 1235, "The port number to listen on."]]

class MyServiceMaker(object):
implements(IServiceMaker, IPlugin)
tapname = "myproject"
description = "Run this! It'll make your dog happy."
options = Options

def makeService(self, options):
"""
Construct a TCPServer from a factory defined in myproject.

2.1. Developer Guides 201

https://twistedmatrix.com/documents/16.0.0/api/twisted.plugin.IPlugin.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.application.service.IServiceMaker.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.python.usage.Options.html

Twisted Documentation, Release 16.0.0

"""
return internet.TCPServer(int(options["port"]), MyFactory())

Now construct an object which *provides* the relevant interfaces
The name of this variable is irrelevant, as long as there is *some*
name bound to a provider of IPlugin and IServiceMaker.

serviceMaker = MyServiceMaker()

Now running twistd --help should print myproject in the list of available subcommands, followed by the
description that we specified in the plugin. twistd -n myproject would, assuming we defined a MyFactory
factory inside myproject , start a listening server on port 1235 with that factory.

Using cred with your TAP

Twisted ships with a robust authentication framework to use with your application. If your server needs authentication
functionality, and you haven’t read about twisted.cred yet, read up on it first.

If you are building a twistd plugin and you want to support a wide variety of authentication patterns, Twisted provides
an easy-to-use mixin for your Options subclass: strcred.AuthOptionMixin . The following code is an example of using
this mixin:

from twisted.cred import credentials, portal, strcred
from twisted.python import usage
from twisted.plugin import IPlugin
from twisted.application.service import IServiceMaker
from myserver import myservice

class ServerOptions(usage.Options, strcred.AuthOptionMixin):
This part is optional; it tells AuthOptionMixin what
kinds of credential interfaces the user can give us.
supportedInterfaces = (credentials.IUsernamePassword,)

optParameters = [
["port", "p", 1234, "Server port number"],
["host", "h", "localhost", "Server hostname"]]

class MyServerServiceMaker(object):
implements(IServiceMaker, IPlugin)
tapname = "myserver"
description = "This server does nothing productive."
options = ServerOptions

def makeService(self, options):
"""Construct a service object."""
The realm is a custom object that your server defines.
realm = myservice.MyServerRealm(options["host"])

The portal is something Cred can provide, as long as
you have a list of checkers that you'll support. This
list is provided my AuthOptionMixin.
portal = portal.Portal(realm, options["credCheckers"])

OR, if you know you might get multiple interfaces, and
only want to give your application one of them, you
also have that option with AuthOptionMixin:

202 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.cred.strcred.AuthOptionMixin.html

Twisted Documentation, Release 16.0.0

interface = credentials.IUsernamePassword
portal = portal.Portal(realm, options["credInterfaces"][interface])

The protocol factory is, like the realm, something you implement.
factory = myservice.ServerFactory(realm, portal)

Finally, return a service that will listen for connections.
return internet.TCPServer(int(options["port"]), factory)

As in our example above, we have to construct an object that
provides the IPlugin and IServiceMaker interfaces.

serviceMaker = MyServerServiceMaker()

Now that you have your TAP configured to support any authentication we can throw at it, you’re ready to use it. Here
is an example of starting your server using the /etc/passwd file for authentication. (Clearly, this won’t work on servers
with shadow passwords.)

$ twistd myserver --auth passwd:/etc/passwd

For a full list of cred plugins supported, see twisted.plugins , or use the command-line help:

$ twistd myserver --help-auth
$ twistd myserver --help-auth-type passwd

Conclusion

You should now be able to

• Create a twistd plugin

• Incorporate authentication into your plugin

• Use it from your development environment

• Install it correctly and use it in deployment

2.1.27 Deploying Twisted with systemd

Introduction

In this tutorial you will learn how to start a Twisted service using systemd. You will also learn how to start the
service using socket activation.

Note: The examples in this tutorial demonstrate how to launch a Twisted web server, but the same techniques apply
to any Twisted service.

Prerequisites

Twisted

2.1. Developer Guides 203

https://twistedmatrix.com/documents/16.0.0/api/twisted.plugins.html

Twisted Documentation, Release 16.0.0

You will need a version of Twisted >= 12.2 for the socket activation section of this tutorial.

This tutorial was written on a Fedora 18 Linux operating system with a system wide installation of Twisted
and Twisted Web.

If you have installed Twisted locally eg in your home directory or in a virtualenv, you will need to modify
the paths in some of the following examples.

Test your Twisted installation by starting a twistd web server on TCP port 8080 with the following
command:

$ twistd --nodaemon web --port 8080 --path /srv/www/www.example.com/static
2013-01-28 13:21:35+0000 [-] Log opened.
2013-01-28 13:21:35+0000 [-] twistd 12.3.0 (/usr/bin/python 2.7.3) starting up.
2013-01-28 13:21:35+0000 [-] reactor class: twisted.internet.epollreactor.EPollReactor.
2013-01-28 13:21:35+0000 [-] Site starting on 8080
2013-01-28 13:21:35+0000 [-] Starting factory <twisted.web.server.Site instance at 0x7f57eb66efc8>

This assumes that you have the following static web page in the following directory structure:

tree /srv/
/srv/
-- www

-- www.example.com
-- static

-- index.html

<!doctype html>
<html lang=en>
<head>

<meta charset=utf-8>
<title>Example Site</title>

</head>
<body>

<h1>Example Site</h1>
</body>

</html>

Now try connecting to http://localhost:8080 in your web browser.

If you do not see your web page or if twistd didn’t start, you should investigate and fix the problem
before continuing.

Basic Systemd Service Configuration

The essential configuration file for a systemd service is the service file.

Later in this tutorial, you will learn about some other types of configuration file, which are used to control when and
how your service is started.

But we will begin by configuring systemd to start a Twisted web server immediately on system boot.

Create a systemd.service file

Create the service file at /etc/systemd/system/www.example.com.service with the following content:

/etc/systemd/system/www.example.com.service

204 Chapter 2. Twisted Core

http://localhost:8080
http://www.freedesktop.org/software/systemd/man/systemd.service.html
http://www.freedesktop.org/software/systemd/man/systemd.service.html

Twisted Documentation, Release 16.0.0

[Unit]
Description=Example Web Server

[Service]
ExecStart=/usr/bin/twistd \

--nodaemon \
--pidfile= \
web --port 8080 --path .

WorkingDirectory=/srv/www/www.example.com/static

User=nobody
Group=nobody

Restart=always

[Install]
WantedBy=multi-user.target

This configuration file contains the following note worthy directives:

ExecStart

Always include the full path to twistd in case you have multiple versions installed.

The --nodaemon flag makes twistd run in the foreground. Systemd works best with child processes
that remain in the foreground.

The --pidfile= flag prevents twistd from writing a pidfile. A pidfile is not necessary when Twisted
runs as a foreground process.

The --path flag specifies the location of the website files. In this example we use ”.” which makes
twistd serve files from its current working directory (see below).

WorkingDirectory

Systemd can configure the working environment of its child processes.

In this example the working directory of twistd is set to that of the static website.

User / Group

Systemd can also control the effective user and group of its child processes.

This example uses an un-privileged user “nobody” and un-privileged group “nobody”.

This is an important security measure which ensures that the Twisted sub-process can not access restricted
areas of the file system.

Restart

Systemd can automatically restart a child process if it exits or crashes unexpectedly.

In this example the Restart option is set to always, which ensures that twistd will be restarted
under all circumstances.

WantedBy

Systemd service dependencies are controlled by WantedBy and RequiredBy directives in the
[Install] section of configuration file.

The special multi-user.target is used in this example so that systemd starts the twistd web service
when it reaches the multi-user stage of the boot sequence.

There are many more service directives which are documented in the systemd.directives man page.

2.1. Developer Guides 205

http://www.freedesktop.org/software/systemd/man/systemd.special.html#multi-user.target
http://www.freedesktop.org/software/systemd/man/systemd.directives.html

Twisted Documentation, Release 16.0.0

Reload systemd

$ sudo systemctl daemon-reload

This forces systemd to read the new configuration file.

Always run systemctl daemon-reload after changing any of the systemd configuration files.

Start the service

$ sudo systemctl start www.example.com

twistd should now be running and listening on TCP port 8080. You can verify this using the systemctl status
command. eg

$ systemctl status www.example.com.service
www.example.com.service - Example Web Server

Loaded: loaded (/etc/systemd/system/www.example.com.service; enabled)
Active: active (running) since Mon 2013-01-28 16:16:26 GMT; 1s ago

Main PID: 10695 (twistd)
CGroup: name=systemd:/system/www.example.com.service

-10695 /usr/bin/python /usr/bin/twistd --nodaemon --pidfile= web --port 8080 --path .

Jan 28 16:16:26 zorin.lan systemd[1]: Starting Example Web Server...
Jan 28 16:16:26 zorin.lan systemd[1]: Started Example Web Server.
Jan 28 16:16:26 zorin.lan twistd[10695]: 2013-01-28 16:16:26+0000 [-] Log opened.
Jan 28 16:16:26 zorin.lan twistd[10695]: 2013-01-28 16:16:26+0000 [-] twistd 12.1.0 (/usr/bin/python 2.7.3) starting up.
Jan 28 16:16:26 zorin.lan twistd[10695]: 2013-01-28 16:16:26+0000 [-] reactor class: twisted.internet.epollreactor.EPollReactor.
Jan 28 16:16:26 zorin.lan twistd[10695]: 2013-01-28 16:16:26+0000 [-] Site starting on 8080
Jan 28 16:16:26 zorin.lan twistd[10695]: 2013-01-28 16:16:26+0000 [-] Starting factory <twisted.web.server.Site instance at 0x159b758>

The systemctl status command is convenient because it shows you both the current status of the service and a
short log of the service output.

This is especially useful for debugging and diagnosing service startup problems.

The twistd subprocess will log messages to stderr and systemd will log these messages to syslog. You can
verify this by monitoring the syslog messages or by using the new journalctl tool in Fedora.

See the systemctl man page for details of other systemctl command line options.

Enable the service

We’ve seen how to start the service manually, but now we need to “enable” it so that it starts automatically at boot
time.

Enable the service with the following command:

$ sudo systemctl enable www.example.com.service
ln -s '/etc/systemd/system/www.example.com.service' '/etc/systemd/system/multi-user.target.wants/www.example.com.service'

This creates a symlink to the service file in the multi-user.target.wants directory.

The Twisted web server will now be started automatically at boot time.

The multi-user.target is an example of a “special” systemd unit. Later in this tutorial you will learn how to
use another special unit - the sockets.target.

206 Chapter 2. Twisted Core

http://www.freedesktop.org/software/systemd/man/systemctl.html
http://www.freedesktop.org/software/systemd/man/systemd.special.html

Twisted Documentation, Release 16.0.0

Test that the service is automatically restarted

The Restart=always option in the systemd.service file ensures that systemd will restart the twistd
process if and when it exits unexpectedly.

You can read about other Restart options in the systemd.service man page.

Try killing the twistd process and then checking its status again:

$ sudo kill 12543

$ systemctl status www.example.com.service
www.example.com.service - Example Web Server

Loaded: loaded (/etc/systemd/system/www.example.com.service; disabled)
Active: active (running) since Mon 2013-01-28 17:47:37 GMT; 1s ago

Main PID: 12611 (twistd)

The “Active” time stamp shows that the twistd process was restarted within 1 second.

Now stop the service before you proceed to the next section.

$ sudo systemctl stop www.example.com.service

$ systemctl status www.example.com.service
www.example.com.service - Example Web Server

Loaded: loaded (/etc/systemd/system/www.example.com.service; enabled)
Active: inactive (dead) since Mon 2013-01-28 16:51:12 GMT; 1s ago

Process: 10695 ExecStart=/usr/bin/twistd --nodaemon --pidfile= web --port 8080 --path . (code=exited, status=0/SUCCESS)

Socket Activation

First you need to understand what “socket activation” is. This extract from the systemd daemon man page explains it
quite clearly.

In a socket-based activation scheme the creation and binding of the listening socket as primary communi-
cation channel of daemons to local (and sometimes remote) clients is moved out of the daemon code and
into the init system.

Based on per-daemon configuration the init system installs the sockets and then hands them off to the
spawned process as soon as the respective daemon is to be started.

Optionally activation of the service can be delayed until the first inbound traffic arrives at the socket, to
implement on-demand activation of daemons.

However, the primary advantage of this scheme is that all providers and all consumers of the sockets can
be started in parallel as soon as all sockets are established.

In addition to that daemons can be restarted with losing only a minimal number of client transactions or
even any client request at all (the latter is particularly true for state-less protocols, such as DNS or syslog),
because the socket stays bound and accessible during the restart, and all requests are queued while the
daemon cannot process them.

Another benefit of socket activation is that systemd can listen on privileged ports and start Twisted with privileges
already dropped. This allows a Twisted service to be configured and restarted by a non-root user.

Twisted (since version 12.2) includes a systemd endpoint API and a corresponding string ports syntax which allows a
Twisted service to inherit a listening socket from systemd.

The following example builds on the previous example, demonstrating how to enable socket activation for a simple
Twisted web server.

2.1. Developer Guides 207

http://www.freedesktop.org/software/systemd/man/systemd.service.html
http://www.freedesktop.org/software/systemd/man/daemon.html

Twisted Documentation, Release 16.0.0

Note: Before continuing, stop the previous example service with the following command:

$ sudo systemctl stop www.example.com.service

Create a systemd.socket file

Create the systemd.socket file at /etc/systemd/system/www.example.com.socket with the following
content:

/etc/systemd/system/www.example.com.socket

[Socket]
ListenStream=0.0.0.0:80

[Install]
WantedBy=sockets.target

This configuration file contains the following important directives:

ListenStream=0.0.0.0:80

This option configures systemd to create a listening TCP socket bound to all local IPv4 addresses on
port 80.

WantedBy=sockets.target

This is a special target used by all socket activated services. systemd will automatically bind to all such
socket activation ports during boot up.

You also need to modify the systemd.service file as follows:

/etc/systemd/system/www.example.com.service

[Unit]
Description=Example Web Server

[Service]
ExecStart=/usr/bin/twistd \

--nodaemon \
--pidfile= \
web --port systemd:domain=INET:index=0 --path .

NonBlocking=true

WorkingDirectory=/srv/www/www.example.com/static

User=nobody
Group=nobody

Restart=always

Note the following important directives and changes:

ExecStart

The domain=INET endpoint argument makes twistd treat the inherited file descriptor as an IPv4
socket.

The index=0 endpoint argument makes twistd adopt the first file descriptor inherited from systemd.

208 Chapter 2. Twisted Core

http://www.freedesktop.org/software/systemd/man/systemd.socket.html
http://www.freedesktop.org/software/systemd/man/systemd.special.html#sockets.target

Twisted Documentation, Release 16.0.0

Socket activation is also technically possible with other socket families and types, but Twisted currently
only accepts IPv4 and IPv6 TCP sockets. See Limitations and Known Issues below.

NonBlocking

This must be set to true to ensure that systemd passes non-blocking sockets to Twisted.

[Install]

In this example, the [Install] section has been moved to the socket configuration file.

Reload systemd so that it reads the updated configuration files.

$ sudo systemctl daemon-reload

Start and enable the socket

You can now start systemd listening on the socket with the following command:

$ sudo systemctl start www.example.com.socket

This command refers specifically to the socket configuration file, not the service file.

systemd should now be listening on port 80

$ systemctl status www.example.com.socket
www.example.com.socket

Loaded: loaded (/etc/systemd/system/www.example.com.socket; disabled)
Active: active (listening) since Tue 2013-01-29 14:53:17 GMT; 7s ago

Jan 29 14:53:17 zorin.lan systemd[1]: Listening on www.example.com.socket.

But twistd should not yet have started. You can verify this using the systemctl command. eg

$ systemctl status www.example.com.service
www.example.com.service - Example Web Server

Loaded: loaded (/etc/systemd/system/www.example.com.service; static)
Active: inactive (dead) since Tue 2013-01-29 14:48:42 GMT; 6min ago

Enable the socket, so that it will be started automatically with the other socket activated services during boot up.

$ sudo systemctl enable www.example.com.socket
ln -s '/etc/systemd/system/www.example.com.socket' '/etc/systemd/system/sockets.target.wants/www.example.com.socket'

Activate the port to start the service

Now try connecting to http://localhost:80 in your web browser.

systemd will accept the connection and start twistd, passing it the listening socket. You can verify this by using
systemctl to report the status of the service. eg

$ systemctl status www.example.com.service
www.example.com.service - Example Web Server

Loaded: loaded (/etc/systemd/system/www.example.com.service; static)
Active: active (running) since Tue 2013-01-29 15:02:20 GMT; 3s ago

Main PID: 25605 (twistd)
CGroup: name=systemd:/system/www.example.com.service

-25605 /usr/bin/python /usr/bin/twistd --nodaemon --pidfile= web --port systemd:domain=INET:index=0 --path .

2.1. Developer Guides 209

http://localhost:80

Twisted Documentation, Release 16.0.0

Jan 29 15:02:20 zorin.lan systemd[1]: Started Example Web Server.
Jan 29 15:02:20 zorin.lan twistd[25605]: 2013-01-29 15:02:20+0000 [-] Log opened.
Jan 29 15:02:20 zorin.lan twistd[25605]: 2013-01-29 15:02:20+0000 [-] twistd 12.1.0 (/usr/bin/python 2.7.3) starting up.
Jan 29 15:02:20 zorin.lan twistd[25605]: 2013-01-29 15:02:20+0000 [-] reactor class: twisted.internet.epollreactor.EPollReactor.
Jan 29 15:02:20 zorin.lan twistd[25605]: 2013-01-29 15:02:20+0000 [-] Site starting on 80
Jan 29 15:02:20 zorin.lan twistd[25605]: 2013-01-29 15:02:20+0000 [-] Starting factory <twisted.web.server.Site instance at 0x24be758>

Conclusion

In this tutorial you have learned how to deploy a Twisted service using systemd. You have also learned how the
service can be started on demand, using socket activation.

Limitations and Known Issues

1. Twisted can not accept UNIX or datagram sockets from systemd.

2. Twisted does not support listening for SSL connections on sockets inherited from systemd.

Further Reading

• systemd Documentation

2.1.28 Logging with twisted.logger

The Basics

Logging consists of two main endpoints: applications that emit events, and observers that receive and handle those
events. An event is simply a dict object containing the relevant data that describes something interesting that has
occurred in the application. For example: a web server might emit an event after handling each request that includes the
URI of requested resource, the response’s status code, a count of bytes transferred, and so on. All of that information
might be contained in a pair of objects representing the request and response, so logging this event could be as simple
as:

log.info(request=request, response=response)

The above API would seem confusing to users of many logging systems, which are built around the idea of emitting
strings to a file. There is, after all, no string in the above call. In such systems, one might expect the API to look like
this instead:

log.info(
"{uri}: status={status}, bytes={size}, etc..."
.format(uri=request.uri, status=response.code, size=response.size)

)

Here, a string is rendered by formatting data from our request and response objects. The string can be easily appended
to a log file, to be later read by an administrator, or perhaps teased out via some scripts or log gathering tools.

One disadvantage to this is that a strings meant to be human-readable are not necessarily easy (or even possible) for
software to handle reliably. While text files are a common medium for storing logs, one might want to write code that
notices certain types of events and does something other than store the event.

In the web server example, if many requests from a given IP address are resulting in failed authentication, someone
might be trying to break in to the server. Perhaps blocking requests from that IP address would be useful. An observer
receiving the above event as a string would have to resort to parsing the string to extract the relevant information,

210 Chapter 2. Twisted Core

http://www.freedesktop.org/wiki/Software/systemd/

Twisted Documentation, Release 16.0.0

which may perform poorly and, depending on how well events are formatted, it may also be difficult to avoid bugs.
Additionally, any information not encoded into the string is simply unavailable; if the IP address isn’t in the string, it
cannot be obtained from the event.

However, if the request and response objects are available to the observer, as in the first example, it would
be possible to write an observer that accessed any attributes of those objects. It would also be a lot easier to write
an observer that emitted structured information by serializing these objects into a format such as JSON, rows in a
database, etc.

Events-as-strings do have the advantage that it’s obvious what an observer that writes strings, for example to a file,
would emit. We can solve this more flexibly by providing an optional format string in events that can be used for this
purpose:

log.info(
"{request.uri}: status={response.status}, bytes={response.size}, etc...",
request=request, response=response

)

Note that this looks very much like the events-as-strings version of the API, except that the string is not rendered by
the caller; we leave that to the observer, if and when it is needed . The observer also has direct access to the request
and response objects, as well as their attributes. Now a text-based observer can format the text in a prescribed way,
and an observer that wants to handle these events in some other manner can do so as well.

Usage for emitting applications

The first thing that an application that emits logging events needs to do is to instantiate a Logger object, which provides
the API to emit events. A Logger may be created globally for a module:

from twisted.logger import Logger
log = Logger()

def handleData(data):
log.debug("Got data: {data!r}.", data=data)

A Logger can also be associated with a class:

from twisted.logger import Logger

class Foo(object):
log = Logger()

def oops(self, data):
self.log.error(

"Oops! Invalid data from server: {data!r}",
data=data

)

When associated with a class in this manner, the "log_source" key is set in the event. For example:

logsource.py

from twisted.logger import Logger

class MyObject(object):
log = Logger()

def __init__(self, value):
self.value = value

2.1. Developer Guides 211

https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.Logger.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.Logger.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.Logger.html

Twisted Documentation, Release 16.0.0

def doSomething(self, something):
self.log.info(

"Object with value {log_source.value!r} doing {something}.",
something=something

)

MyObject(7).doSomething("a task")

This example will show the string “object with value 7 doing a task” because the log_source key is automatically
set to the MyObject instance that the Logger is retrieved from.

Capturing Failures

Logger provides a failure method, which allows one to capture a Failure object conveniently:

from twisted.logger import Logger
log = Logger()

try:
1 / 0

except:
log.failure("Math is hard!")

The emitted event will have the "log_failure" key set, which is a Failure that captures the exception. This can be
used by my observers to obtain a traceback. For example, FileLogObserver will append the traceback to it’s output:

Math is hard!

Traceback (most recent call last):
--- <exception caught here> ---

File "/tmp/test.py", line 8, in <module>
1/0

exceptions.ZeroDivisionError: integer division or modulo by zero

Note that this API is meant to capture unexpected and unhandled errors (that is: bugs, which is why tracebacks are
preserved). As such, it defaults to logging at the critical level. It is generally more appropriate to instead use log.error()
when logging an expected error condition that was appropriately handled by the software.

Namespaces

All Logger s have a namespace, which can be used to categorize events. Namespaces may be specified by passing in
a namespace argument to Logger ‘s initializer, but if none is given, the logger will derive its namespace from the
module name of the callable that instantiated it, or, in the case of a class, from the fully qualified name of the class. A
Logger will add a log_namespace key to the events it emits.

In the first example above, the namespace would be some.module , and in the second example, it would be
some.module.Foo .

Log levels

Logger s provide a number of methods for emitting events. These methods all have the same signature, but each will
attach a specific log_level key to events. Log levels are defined by the LogLevel constants container. These are:

debug

212 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.Logger.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.Logger.failure.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.python.failure.Failure.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.python.failure.Failure.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.FileLogObserver.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.LogLevel.critical.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.Logger.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.Logger.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.Logger.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.Logger.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.LogLevel.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.LogLevel.debug.html

Twisted Documentation, Release 16.0.0

Debugging events: Information of use to a developer of the software, not generally of interest to someone
running the software unless they are attempting to diagnose a software issue.

info

Informational events: Routine information about the status of an application, such as incoming connec-
tions, startup of a subsystem, etc.

warn

Warning events: Events that may require greater attention than informational events but are not a systemic
failure condition, such as authorization failures, bad data from a network client, etc. Such events are of
potential interest to system administrators, and should ideally be phrased in such a way, or documented,
so as to indicate an action that an administrator might take to mitigate the warning.

error

Error conditions: Events indicating a systemic failure. For example, resource exhaustion, or the loss of
connectivity to an external system, such as a database or API endpoint, without which no useful work
can proceed. Similar to warnings, errors related to operational parameters may be actionable to system
administrators and should provide references to resources which an administrator might use to resolve
them.

critical

Critical failures: Errors indicating systemic failure (ie. service outage), data corruption, imminent data
loss, etc. which must be handled immediately. This includes errors unanticipated by the software, such as
unhandled exceptions, wherein the cause and consequences are unknown.

In the first example above, the call to log.debug will add a log_level key to the emitted event with a value of
LogLevel.debug . In the second example, calling self.log.error would use a value of LogLevel.error .

The above descriptions are simply guidance, but it is worth noting that log levels have a reduced value if they are used
inconsistently. If one module in an application considers a message informational, and another module considers a
similar message an error, then filtering based on log levels becomes harder. This is increasingly likely if the modules in
question are developed by different parties, as will often be the case with externally source libraries and frameworks.
(If a module tends to use higher levels than another, namespaces may be used to calibrate the relative use of log levels,
but that is obviously suboptimal.) Sticking to the above guidelines will hopefully help here.

Emitter method signatures

The emitter methods (debug , info , warn , etc.) all take an optional format string as a first argument, followed by
keyword arguments that will be included in the emitted event.

Note that all three examples in the opening section of this HOWTO fit this signature. The first omits the format, which
doesn’t lend itself well to text logging. The second omits the keyword arguments, which hostile to anything other than
text logging, and is therefore ill-advised. Finally, the third provides both, which is the recommended usage.

These methods are all convenience wrappers around the emit method, which takes a LogLevel as its first argument.

Format strings

Format strings provide observers with a standard way to format an event as text suitable for a human being to read,
via the function formatEvent . When writing a format string, take care to present it in a manner which would make
as much sense as possible to a human reader. Particularly, format strings need not be written with an eye towards
parseability or machine-readability. If you want to save your log events along with their structure and then analyze
them later, see the next section, on “saving events for later” .

Format strings should be

2.1. Developer Guides 213

https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.LogLevel.info.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.LogLevel.warn.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.LogLevel.error.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.LogLevel.critical.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.LogLevel.debug.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.LogLevel.error.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.Logger.debug.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.Logger.info.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.Logger.warn.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.Logger.emit.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.LogLevel.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.formatEvent.html

Twisted Documentation, Release 16.0.0

unicode , and use PEP 3101 syntax to describe how the event should be rendered as human-readable text. For
legacy support and convenience in python 2, UTF-8-encoded bytes are also accepted for format strings, but unicode
is preferred. There are two variations from PEP 3101 in the format strings used by this module:

1. Positional (numerical) field names (eg. {0}) are not permitted. Event keys are not ordered, which means
positional field names do not make sense in this context. However, this is not an accidental limitation, but an
intentional design decision. As software evolves, log messages often grow to include additional information,
while still logging the same conceptual event. By using meaningful names rather than opaque indexes for event
keys, these identifiers are more robust against future changes in the format of messages and the information
provided.

2. Field names ending in parentheses (eg. {foo()}) will call the referenced object with no arguments, then call
str on the result, rather than calling str on the referenced object directly. This extension to PEP 3101 format
syntax is provided to make it as easy as possible to defer potentially expensive work until a log message must
be emitted. For example, let’s say that we wanted to log a message with some useful, but potentially expensive
information from the ‘request’ object:

log.info("{request.uri} useful, but expensive: {request.usefulButExpensive()}",
request=request)

In the case where this log message is filtered out as uninteresting and not saved, no formatting work is done
at all ; and since we can use PEP3101 attribute-access syntax in conjunction with this parenthesis extension,
the caller does not even need to build a function or bound method object to pass as a separate key. There is no
support for specifying arguments in the format string; the goal is to make it idiomatic to express that work be
done later, not to implement a full Python expression evaluator.

Event keys added by the system

The logging system will add keys to emitted events. All event keys that are inserted by the logging system with have
a log_ prefix, to avoid namespace collisions with application-provided event keys. Applications should therefore not
insert event keys using the log_ prefix, as that prefix is reserved for the logging system. System-provided event keys
include:

log_logger

Logger object that the event was emitted to.

log_source

The source object that emitted the event. When a Logger is accessed as an attribute of a class, the class
is the source. When accessed as an attribute of an instance, the instance is the source. In other cases, the
source is None .

log_level

The LogLevel associated with the event.

log_namespace

The namespace associated with the event.

log_format

The format string provided for use by observers that wish to render the event as text. This may be None ,
if no format string was provided.

log_time

The time that the event was emitted, as returned by time .

log_failure

214 Chapter 2. Twisted Core

http://www.python.org/dev/peps/pep-3101/
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.Logger.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.Logger.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.LogLevel.html
https://twistedmatrix.com/documents/16.0.0/api/time.time.html

Twisted Documentation, Release 16.0.0

A Failure object captured when the event was emitted.

Avoid mutable event keys

Emitting applications should be cautious about inserting objects into event which may be mutated later. While ob-
servers are called synchronously, it is possible that an observer will do something like queue up the event for later
serialization, in which case the serialized object may be different than intended.

Saving events for later

For compatibility reasons, twistd will log to a text-based format by default. However, it’s much better to use a
structured log file format which preserves information about the events being logged. twisted.logger provides
two APIs: jsonFileLogObserver and eventsFromJSONLogFile, which allow you to save and retrieve structured log
events with a basic level of fidelity. Log events are serialized as JSON dictionaries, with serialization rules that are as
lenient as possible; any unknown values are replaced with simple placeholder values.

jsonFileLogObserver will create a log observer that will save events as structured data, like so:

saver.py

import io
from twisted.logger import jsonFileLogObserver, Logger

log = Logger(observer=jsonFileLogObserver(io.open("log.json", "a")),
namespace="saver")

def loggit(values):
log.info("Some values: {values!r}", values=values)

loggit([1234, 5678])
loggit([9876, 5432])

And eventsFromJSONLogFile can load those events again; here, you can see that the event has preserved enough
information to be formatted as human-readable again:

loader.py

import sys
import io
from twisted.logger import (

eventsFromJSONLogFile, textFileLogObserver
)

output = textFileLogObserver(sys.stdout)

for event in eventsFromJSONLogFile(io.open("log.json")):
output(event)

You can also, of course, feel free to access any of the keys in the event object as you load them, as well; basic
structures such as lists, numbers, dictionaries and strings (anything serializable with JSON) will be preserved:

loader-math.py

import io
from twisted.logger import eventsFromJSONLogFile

for event in eventsFromJSONLogFile(io.open("log.json")):
print(sum(event["values"]))

2.1. Developer Guides 215

https://twistedmatrix.com/documents/16.0.0/api/twisted.python.failure.Failure.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.jsonFileLogObserver.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.eventsFromJSONLogFile.html

Twisted Documentation, Release 16.0.0

Implementing an observer

An observer must provide the ILogObserver interface. That interface simply describes a 1-argument callable that
takes a dict , so a simple implementation may simply use the handy provider decorator on a function that takes one
argument:

from zope.interface import provider
from twisted.logger import ILogObserver, formatEvent

@provider(ILogObserver)
def simpleObserver(event):

print(formatEvent(event))

The formatEvent function returns a textual (unicode) representation of the event.

While it is recommended, in most cases it is not required that observers declare their compliance with ILogObserver
. This flexibility exists to allow for pre-existing callables and lambda expressions to be used as observers. As an
example, if one would like to accumulate events in a list , then list.append may be used as an observer.

When implementing your own log observer, however, you should always keep in mind that unlike most objects within
Twisted, a log observer must be thread safe .

Specifically, a log observer:

• must be prepared to be called from threads other than the main thread (or I/O thread, or reactor thread)

• must be prepared to be called from multiple threads concurrently

• must not interact with other Twisted APIs that are not explicitly thread-safe without first taking precautions like
using callFromThread

Keep in mind that this is true even if you elect not to explicitly interact with any threads from your program. Twisted
itself may log messages from threads, and Twisted may internally use APIs like callInThread ; for example, Twisted
uses threads to look up hostnames when making an outgoing connection.

Given this extra wrinkle, it’s usually best to see if you can find an existing log observer implementation that does what
you need before implementing your own; thread safety can be tricky to implement. Luckily, twisted.logger comes
with several useful observers, which are documented below.

Writing an observer for event analysis

Twisted includes log observers which take care of most of the “normal” uses of logging, like writing messages to a file,
saving them as text, filtering them, and so on. There are two common reasons you might want to write a log observer
of your own. The first is to ship log messages over to a different kind of external system which Twisted itself does not
support. If you’ve read the above, you now know enough to do that; simply implement a function that converts the
dictionary to something amenable to your external system or file format, and send it there or save it. The second task
is to do some kind of analysis, either real-time within your process or after the fact offline.

You’re probably going to have to aggregate information from your own code and from libraries you’re using, including
Twisted itself, and you may not have much in the way of control over how those messages are organized. You’re also
probably trying to aggregate information from ad-hoc messages into some kind of structure.

One way to extract such semi-structured information is to feed your logs into an external system like logstash , and
process them there. Such systems are quite powerful and twisted.logger does not try to replace them. However,
such systems are necessarily external, and therefore if you want to react to the log analysis within your application - for
example, denying access in response to an abusive client - you would have to write some glue code to push messages
from your log-analysis system back into your application. For such cases, it’s useful to be able to write log analysis
code as a log observer.

216 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.ILogObserver.html
https://twistedmatrix.com/documents/16.0.0/api/zope.interface.provider.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.formatEvent.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.ILogObserver.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorThreads.callFromThread.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorThreads.callInThread.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.html
http://logstash.net

Twisted Documentation, Release 16.0.0

Assuming that the libraries whose log events you’re interested in analyzing are making use of twisted.logger ,
you can analyze log events either live as they’re being logged, or loaded from a saved log file.

If you’re writing code to log events directly for potential analysis, then you should simply structure your messages
to include all necessary information as serialization-friendly values in events, and then simply pull them out, like the
loader-math.py example above.

However, let’s say you’re trying to interact with a system that logs messages like so:

ad_hoc.py

from twisted.logger import Logger

class AdHoc(object):
log = Logger(namespace="ad_hoc")

def __init__(self, a, b):
self.a = a
self.b = b

def logMessage(self):
self.log.info("message from {log_source} "

"where a is {log_source.a} and b is {log_source.b}")

In this example, the AdHoc object is not itself serializable, but it has two relevant attributes, which the log message’s
format string calls out as attributes of the log_source field, as described above: a and b .

To analyze this event, we can’t pursue the same strategy shown above in loader-math.py . We don’t have any
key/value pairs of the log event to examine directly; a and b are not present as keys themselves. We could look for the
log_source key within the event and access its a and b attributes, but that wouldn’t work once the event had been
serialized and loaded again, since an AdHoc instance isn’t a basic type that can be saved to JSON.

Luckily, twisted.logger provides an API for doing just this: extractField . You use it like so:

analyze.py

from twisted.logger import extractField

fmt = (
"message from {log_source} "
"where a is {log_source.a} and b is {log_source.b}"

)

def analyze(event):
if event.get("log_format") == fmt:

a = extractField("log_source.a", event)
b = extractField("log_source.b", event)
print("A + B = " + repr(a + b))

This analyze function can then be used in two ways. First, you can analyze your application “live”, as it’s running.

online_analyze.py

from twisted.logger import globalLogPublisher
from analyze import analyze
from ad_hoc import AdHoc

globalLogPublisher.addObserver(analyze)

AdHoc(3, 4).logMessage()

2.1. Developer Guides 217

https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.extractField.html

Twisted Documentation, Release 16.0.0

If you run this script, you will see that it extracts the values from the AdHoc object’s log message.

However, you can also analyze output from a saved log file, using the exact same code. First, you’ll need to produce a
log file with a message from an AdHoc object in it:

ad_hoc_save.py

import io
from twisted.logger import jsonFileLogObserver, globalLogPublisher
from ad_hoc import AdHoc

globalLogPublisher.addObserver(jsonFileLogObserver(io.open("log.json", "a")))

AdHoc(3, 4).logMessage()

If you run that script, it will produce a log.json file which can be analyzed in the same manner as the loader.py
example above:

offline_analyze.py

import io
from twisted.logger import eventsFromJSONLogFile
from analyze import analyze

for event in eventsFromJSONLogFile(io.open("log.json")):
analyze(event)

When doing analysis, it always seems like you should have saved more structured data for later. However, log mes-
sages are often written early on in development, in an ad-hoc way, before a solid understanding has developed about
what information will be useful and what will be redundant. Log messages are therefore a stream-of-consciousness
commentary on what is going on as a system is being developed.

extractField lets you acknowledge the messy reality of how log messages are written, but still take advantage
of structured analysis later on. Just always be sure to use event format fields, not string concatenation, to reference
information about a particular event, and you’ll be able to easily pull apart hastily-written ad-hoc messages from
multiple versions of a system, either as it’s running or once you’ve saved a log file.

Registering an observer

One way to register an observer is to construct a Logger object with it:

from twisted.logger import Logger
from myobservers import PrintingObserver

log = Logger(observer=PrintingObserver())

log.info("Hello")

This will cause all of a logger’s events to be sent to the given observer. In the above example, all events emitted by the
logger (eg. "Hello") will be printed. While that is useful in some cases, it is common to register multiple observers,
and to do so globally for all (or most) loggers in an application.

The global log publisher

The global log publisher is a log observer whose purpose is to capture log events not directed to a specific observer.
In a typical application, the majority of log events will be emitted to the global log publisher. Observers can register
themselves with the global log publisher in order to be forwarded these events.

218 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.Logger.html

Twisted Documentation, Release 16.0.0

When a Logger is created without specifying an observer to send events to, the logger will send its events to the global
log publisher, which is accessible via the name globalLogPublisher .

The global log publisher is a singleton instance of a private subclass of LogPublisher , which is itself an ILogObserver
. What this means is that the global log publisher accepts events like any other observer, and that it forwards those
events to other observers. Observers can be registered to be forwarded events by calling the LogPublisher method
addObserver , and unregister by calling removeObserver :

from twisted.logger import globalLogPublisher
from myobservers import PrintingObserver

log = Logger()

globalLogPublisher.addObserver(PrintingObserver())

log.info("Hello")

The result here is the same as the previous example, except that additional observers can be (and may already have
been) registered. We know that "Hello" will be printed. We don’t know, but it’s very possible, that the same event
will also be handled by other observers.

There is no supported API to discover what other observers are registered with a LogPublisher ; in general, one doesn’t
need to know. If an application is running in twistd , for example, it’s likely that an observer is streaming events to
a file by the time the application code is in play. If it is running in a twistd web container, there will probably be
another observer writing to the access log.

A caveat here is that events are dict objects, which are mutable, so it is possible for an observer to modify an
event that it sees. Because doing so will modify what other observers will see, modifying a received event can be
problematic and should be strongly discouraged. It can be particularly harmful to edit or remove the content of an
existing event key. Furthermore, no guarantees are made as to the order in which observers are called, so the effect of
such modifications on other observers may be non-deterministic.

Starting the global log publisher

When the global log publisher is created, it uses a LimitedHistoryLogObserver (see below) to store events that are
logged by the application in memory until logging is started. Logging is started by registering the first set of observers
with the global log publisher by calling beginLoggingTo :

from twisted.logger import globalLogBeginner
from myobservers import PrintingObserver

log = Logger()

log.info("Hello")

observers = [PrintingObserver()]

globalLogBeginner.beginLoggingTo(observers)

log.info("Hello, again")

What this does is add the given observers (in this example, the PrintingObserver) with the global log observer,
then forwards all of the events that were stored in memory prior to calling beginLoggingTo to these observers, and
gets rid of the LimitedHistoryLogObserver , as it is no longer needed. It is an error to call beginLoggingTo more than
once.

2.1. Developer Guides 219

https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.Logger.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.globalLogPublisher.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.LogPublisher.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.ILogObserver.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.LogPublisher.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.LogPublisher.addObserver.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.LogPublisher.removeObserver.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.LogPublisher.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.LimitedHistoryLogObserver.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.LogBeginner.beginLoggingTo.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.LogBeginner.beginLoggingTo.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.LimitedHistoryLogObserver.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.LogBeginner.beginLoggingTo.html

Twisted Documentation, Release 16.0.0

Provided log observers

This module provides a number of pre-built observers for applications to use:

LogPublisher

Forwards events to other publishers. This allows one to create a graph of observers.

LimitedHistoryLogObserver

Stores a limited number of received events, and can re-play those stored events to another observer later.
This is useful for keeping recent logging history in memory for inspection when other log outputs are not
available.

FileLogObserver

Formats events as text, prefixed with a time stamp and a “system identifier”, and writes them to a file. The
system identifier defaults to a combination of the event’s namespace and level.

FilteringLogObserver

Forwards events to another observer after applying a set of filter predicates (providers of ILogFilterPredi-
cate). LogLevelFilterPredicate is a predicate that be configured to keep track of which log levels to filter
for different namespaces, and will filter out events that are not at the appropriate level or higher.

Compatibility with standard library logging

STDLibLogObserver is provided for compatibility with the standard library’s logging module. Log levels are mapped
between the two systems, and the various attributes of standard library log records are filled in properly.

Note that standard library logging is a blocking API, and logging can be configured to block for long periods (eg. it
may write to the network). No protection is provided to prevent blocking, so such configurations may cause Twisted
applications to perform poorly.

Compatibility with twisted.python.log

This module provides some facilities to enable the existing twisted.python.log module to compatibly forward it’s
messages to this module. As such, existing clients of twisted.python.log will begin using this module indirectly, with
no changes to the older module’s API.

Incrementally porting observers

Observers have an incremental path for porting to the new module. LegacyLogObserverWrapper is an ILogObserver
that wraps a log observer written for the older module. This allows an old-style observer to be registered with a
new-style logger or log publisher compatibly.

2.1.29 Twisted’s Legacy Logging System: twisted.python.log

Note: There is now a new logging system in Twisted (you can read about how to use it here and its API reference
here) which is a replacement for twisted.python.log.

The old logging API, described here, remains for compatibility, and is now implemented as a client of the new logging
system.

220 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.LogPublisher.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.LimitedHistoryLogObserver.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.FileLogObserver.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.FilteringLogObserver.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.ILogFilterPredicate.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.ILogFilterPredicate.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.LogLevelFilterPredicate.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.STDLibLogObserver.html
https://twistedmatrix.com/documents/16.0.0/api/logging.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.python.log.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.python.log.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.LegacyLogObserverWrapper.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.ILogObserver.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.logger.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.python.log.html

Twisted Documentation, Release 16.0.0

New code should adopt the new API.

Basic usage

Twisted provides a simple and flexible logging system in the twisted.python.log module. It has three commonly used
functions:

msg

Logs a new message. For example:

from twisted.python import log
log.msg('Hello, world.')

err

Writes a failure to the log, including traceback information (if any). You can pass it a Failure or Exception
instance, or nothing. If you pass something else, it will be converted to a string with repr and logged.

If you pass nothing, it will construct a Failure from the currently active exception, which makes it conve-
nient to use in an except clause:

try:
x = 1 / 0

except:
log.err() # will log the ZeroDivisionError

startLogging

Starts logging to a given file-like object. For example:

log.startLogging(open('/var/log/foo.log', 'w'))

or:

log.startLogging(sys.stdout)

or:

from twisted.python.logfile import DailyLogFile

log.startLogging(DailyLogFile.fromFullPath("/var/log/foo.log"))

By default, startLogging will also redirect anything written to sys.stdout and sys.stderr to
the log. You can disable this by passing setStdout=False to startLogging .

Before startLogging is called, log messages will be discarded and errors will be written to stderr.

Logging and twistd

If you are using twistd to run your daemon, it will take care of calling startLogging for you, and will also
rotate log files. See twistd and tac and the twistd man page for details of using twistd.

Log files

The twisted.python.logfile module provides some standard classes suitable for use with startLogging , such as
DailyLogFile , which will rotate the log to a new file once per day.

2.1. Developer Guides 221

https://twistedmatrix.com/documents/16.0.0/api/twisted.python.log.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.python.log.LogPublisher.msg.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.python.log.err.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.python.failure.Failure.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.python.log.startLogging.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.python.logfile.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.python.logfile.DailyLogFile.html

Twisted Documentation, Release 16.0.0

Using the standard library logging module

If your application uses the Python standard library logging module or you want to use its easy configuration but don’t
want to lose twisted-produced messages, the observer PythonLoggingObserver should be useful to you.

You just start it like any other observer:

observer = log.PythonLoggingObserver()
observer.start()

Then configure the standard library logging module to behave as you want.

This method allows you to customize the log level received by the standard library logging module using the
logLevel keyword:

log.msg("This is important!", logLevel=logging.CRITICAL)
log.msg("Don't mind", logLevel=logging.DEBUG)

Unless logLevel is provided, logging.INFO is used for log.msg and logging.ERROR is used for log.err .

One special care should be made when you use special configuration of the standard library logging module:
some handlers (e.g. SMTP, HTTP) use the network and so can block inside the reactor loop. Nothing in
PythonLoggingObserver is done to prevent that.

Writing log observers

Log observers are the basis of the Twisted logging system. Whenever log.msg (or log.err) is called, an event
is emitted. The event is passed to each observer which has been registered. There can be any number of observers,
and each can treat the event in any way desired. An example of a log observer in Twisted is the emit method of
FileLogObserver . FileLogObserver , used by startLogging , writes events to a log file. A log observer
is just a callable that accepts a dictionary as its only argument. You can then register it to receive all log events (in
addition to any other observers):

twisted.python.log.addObserver(yourCallable)

The dictionary will have at least two items:

message

The message (a list, usually of strings) for this log event, as passed to log.msg or the message in the
failure passed to log.err .

isError

This is a boolean that will be true if this event came from a call to log.err . If this is set, there may be
a failure item in the dictionary as will, with a Failure object in it.

Other items the built in logging functionality may add include:

printed

This message was captured from sys.stdout , i.e. this message came from a print statement. If
isError is also true, it came from sys.stderr .

You can pass additional items to the event dictionary by passing keyword arguments to log.msg and log.err .
The standard log observers will ignore dictionary items they don’t use.

Important notes:

• Never block in a log observer, as it may run in main Twisted thread. This means you can’t use socket or syslog
standard library logging backends.

222 Chapter 2. Twisted Core

http://docs.python.org/library/logging.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.python.log.PythonLoggingObserver.html
http://docs.python.org/library/logging.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.python.log.FileLogObserver.html

Twisted Documentation, Release 16.0.0

• The observer needs to be thread safe if you anticipate using threads in your program.

Customizing twistd logging

The behavior of the logging that twistd does can be customized either with the --logger option or by setting the
ILogObserver component on the application object. See the Application document for more information.

2.1.30 Symbolic Constants

Overview

It is often useful to define names which will be treated as constants. twisted.python.constants provides APIs for
defining such symbolic constants with minimal overhead and some useful features beyond those afforded by the
common Python idioms for this task.

This document will explain how to use these APIs and what circumstances they might be helpful in.

Constant Names

Constants which have no value apart from their name and identity can be defined by subclassing Names . Consider
this example, in which some HTTP request method constants are defined.

from twisted.python.constants import NamedConstant, Names
class METHOD(Names):

"""
Constants representing various HTTP request methods.
"""
GET = NamedConstant()
PUT = NamedConstant()
POST = NamedConstant()
DELETE = NamedConstant()

Only direct subclasses of Names are supported (i.e., you cannot subclass METHOD to add new constants the collection).

Given this definition, constants can be looked up by name using attribute access on the METHOD object:

>>> METHOD.GET
<METHOD=GET>
>>> METHOD.PUT
<METHOD=PUT>
>>>

If it’s necessary to look up constants from a string (e.g. based on user input of some sort), a safe way to do it is using
lookupByName :

>>> METHOD.lookupByName('GET')
<METHOD=GET>
>>> METHOD.lookupByName('__doc__')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "twisted/python/constants.py", line 145, in lookupByName
raise ValueError(name)

ValueError: __doc__
>>>

2.1. Developer Guides 223

https://twistedmatrix.com/documents/16.0.0/api/twisted.python.constants.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.python.constants.Names.html

Twisted Documentation, Release 16.0.0

As demonstrated, it is safe because any name not associated with a constant (even those special names initialized by
Python itself) will result in ValueError being raised, not some other object not intended to be used the way the
constants are used.

The constants can also be enumerated using the iterconstants method:

>>> list(METHOD.iterconstants())
[<METHOD=GET>, <METHOD=PUT>, <METHOD=POST>, <METHOD=DELETE>]
>>>

Constants can be compared for equality or identity:

>>> METHOD.GET is METHOD.GET
True
>>> METHOD.GET == METHOD.GET
True
>>> METHOD.GET is METHOD.PUT
False
>>> METHOD.GET == METHOD.PUT
False
>>>

Ordered comparisons (and therefore sorting) also work. The order is defined to be the same as the instantiation order
of the constants:

>>> from twisted.python.constants import NamedConstant, Names
>>> class Letters(Names):
... a = NamedConstant()
... b = NamedConstant()
... c = NamedConstant()
...
>>> Letters.a < Letters.b < Letters.c
True
>>> Letters.a > Letters.b
False
>>> sorted([Letters.b, Letters.a, Letters.c])
[<Letters=a>, <Letters=b>, <Letters=c>]
>>>

A subclass of Names may define class methods to implement custom functionality. Consider this definition of
METHOD :

from twisted.python.constants import NamedConstant, Names
class METHOD(Names):

"""
Constants representing various HTTP request methods.
"""
GET = NamedConstant()
PUT = NamedConstant()
POST = NamedConstant()
DELETE = NamedConstant()

@classmethod
def isIdempotent(cls, method):

"""
Return True if the given method is side-effect free, False otherwise.
"""
return method is cls.GET

This functionality can be used as any class methods are used:

224 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

>>> METHOD.isIdempotent(METHOD.GET)
True
>>> METHOD.isIdempotent(METHOD.POST)
False
>>>

Constants With Values

Constants with a particular associated value are supported by the Values base class. Consider this example, in which
some HTTP status code constants are defined.

from twisted.python.constants import ValueConstant, Values
class STATUS(Values):

"""
Constants representing various HTTP status codes.
"""
OK = ValueConstant("200")
FOUND = ValueConstant("302")
NOT_FOUND = ValueConstant("404")

As with Names , constants are accessed as attributes of the class object:

>>> STATUS.OK
<STATUS=OK>
>>> STATUS.FOUND
<STATUS=FOUND>
>>>

Additionally, the values of the constants can be accessed using the value attribute of one these objects:

>>> STATUS.OK.value
'200'
>>>

As with Names , constants can be looked up by name:

>>> STATUS.lookupByName('NOT_FOUND')
<STATUS=NOT_FOUND>
>>>

Constants on a Values subclass can also be looked up by value:

>>> STATUS.lookupByValue('404')
<STATUS=NOT_FOUND>
>>> STATUS.lookupByValue('500')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "twisted/python/constants.py", line 244, in lookupByValue

raise ValueError(value)
ValueError: 500
>>>

Multiple constants may have the same value. If they do, lookupByValue will find the one which is defined first.

Iteration is also supported:

>>> list(STATUS.iterconstants())
[<STATUS=OK>, <STATUS=FOUND>, <STATUS=NOT_FOUND>]
>>>

2.1. Developer Guides 225

https://twistedmatrix.com/documents/16.0.0/api/twisted.python.constants.Values.html

Twisted Documentation, Release 16.0.0

Constants can be compared for equality, identity and ordering:

>>> STATUS.OK == STATUS.OK
True
>>> STATUS.OK is STATUS.OK
True
>>> STATUS.OK is STATUS.NOT_FOUND
False
>>> STATUS.OK == STATUS.NOT_FOUND
False
>>> STATUS.NOT_FOUND > STATUS.OK
True
>>> STATUS.FOUND < STATUS.OK
False
>>>

Note that like Names , Values are ordered by instantiation order, not by value, though either order is the same in the
above example.

As with Names , a subclass of Values can define custom methods:

from twisted.python.constants import ValueConstant, Values
class STATUS(Values):

"""
Constants representing various HTTP status codes.
"""
OK = ValueConstant("200")
NO_CONTENT = ValueConstant("204")
NOT_MODIFIED = ValueConstant("304")
NOT_FOUND = ValueConstant("404")

@classmethod
def hasBody(cls, status):

"""
Return True if the given status is associated with a response body,
False otherwise.
"""
return status not in (cls.NO_CONTENT, cls.NOT_MODIFIED)

This functionality can be used as any class methods are used:

>>> STATUS.hasBody(STATUS.OK)
True
>>> STATUS.hasBody(STATUS.NO_CONTENT)
False
>>>

Constants As Flags

Integers are often used as a simple set for constants. The values for these constants are assigned as powers of two so
that bits in the integer can be set to represent them. Individual bits are often called flags . Flags supports this use-case,
including allowing constants with particular bits to be set, for interoperability with other tools.

POSIX filesystem access control is traditionally done using a bitvector defining which users and groups may perform
which operations on a file. This state might be represented using Flags as follows:

from twisted.python.constants import FlagConstant, Flags
class Permission(Flags):

"""

226 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.python.constants.Flags.html

Twisted Documentation, Release 16.0.0

Constants representing user, group, and other access bits for reading,
writing, and execution.
"""
OTHER_EXECUTE = FlagConstant()
OTHER_WRITE = FlagConstant()
OTHER_READ = FlagConstant()
GROUP_EXECUTE = FlagConstant()
GROUP_WRITE = FlagConstant()
GROUP_READ = FlagConstant()
USER_EXECUTE = FlagConstant()
USER_WRITE = FlagConstant()
USER_READ = FlagConstant()

As for the previous types of constants, these can be accessed as attributes of the class object:

>>> Permission.USER_READ
<Permission=USER_READ>
>>> Permission.USER_WRITE
<Permission=USER_WRITE>
>>> Permission.USER_EXECUTE
<Permission=USER_EXECUTE>
>>>

These constant objects also have a value attribute giving their integer value:

>>> Permission.USER_READ.value
256
>>>

These constants can be looked up by name or value:

>>> Permission.lookupByName('USER_READ') is Permission.USER_READ
True
>>> Permission.lookupByValue(256) is Permission.USER_READ
True
>>>

Constants can also be combined using the logical operators & (and), | (or), and ^ (exclusive or).

>>> Permission.USER_READ | Permission.USER_WRITE
<Permission={USER_READ,USER_WRITE}>
>>> (Permission.USER_READ | Permission.USER_WRITE) & Permission.USER_WRITE
<Permission=USER_WRITE>
>>> (Permission.USER_READ | Permission.USER_WRITE) ^ Permission.USER_WRITE
<Permission=USER_READ>
>>>

These combined constants can be deconstructed via iteration:

>>> mode = Permission.USER_READ | Permission.USER_WRITE
>>> list(mode)
[<Permission=USER_READ>, <Permission=USER_WRITE>]
>>> Permission.USER_READ in mode
True
>>> Permission.USER_EXECUTE in mode
False
>>>

They can also be inspected via boolean operations:

2.1. Developer Guides 227

Twisted Documentation, Release 16.0.0

>>> Permission.USER_READ & mode
<Permission=USER_READ>
>>> bool(Permission.USER_READ & mode)
True
>>> Permission.USER_EXECUTE & mode
<Permission={}>
>>> bool(Permission.USER_EXECUTE & mode)
False
>>>

The unary operator ~ (not) is also defined:

>>> ~Permission.USER_READ
<Permission={GROUP_EXECUTE,GROUP_READ,GROUP_WRITE,OTHER_EXECUTE,OTHER_READ,OTHER_WRITE,USER_EXECUTE,USER_WRITE}>
>>>

Constants created using these operators also have a value attribute.

>>> (~Permission.USER_WRITE).value
383
>>>

Note the care taken to ensure the ~ operator is applied first and the value attribute is looked up second.

A Flags subclass can also define methods, just as a Names or Values subclass may. For example, Permission
might benefit from a method to format a flag as a string in the traditional style. Consider this addition to that class:

from twisted.python import filepath
from twisted.python.constants import FlagConstant, Flags
class Permission(Flags):

...

@classmethod
def format(cls, permissions):

"""
Format permissions flags in the traditional 'rwxr-xr-x' style.
"""
return filepath.Permissions(permissions.value).shorthand()

Use this like any other class method:

>>> Permission.format(Permission.USER_READ | Permission.USER_WRITE | Permission.GROUP_READ | Permission.OTHER_READ)
'rw-r--r--'
>>>

2.1.31 twisted.enterprise.adbapi: Twisted RDBMS support

Abstract

Twisted is an asynchronous networking framework, but most database API implementations unfortunately have block-
ing interfaces – for this reason, twisted.enterprise.adbapi was created. It is a non-blocking interface to the standardized
DB-API 2.0 API, which allows you to access a number of different RDBMSes.

What you should already know

• Python :-)

228 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.enterprise.adbapi.html

Twisted Documentation, Release 16.0.0

• How to write a simple Twisted Server (see this tutorial to learn how)

• Familiarity with using database interfaces (see the documentation for DBAPI 2.0)

Quick Overview

Twisted is an asynchronous framework. This means standard database modules cannot be used directly, as they
typically work something like:

Create connection...
db = dbmodule.connect('mydb', 'andrew', 'password')
...which blocks for an unknown amount of time

Create a cursor
cursor = db.cursor()

Do a query...
resultset = cursor.query('SELECT * FROM table WHERE ...')
...which could take a long time, perhaps even minutes.

Those delays are unacceptable when using an asynchronous framework such as Twisted. For this reason, Twisted
provides twisted.enterprise.adbapi, an asynchronous wrapper for any DB-API 2.0-compliant module.

adbapi will do blocking database operations in separate threads, which trigger callbacks in the originating thread when
they complete. In the meantime, the original thread can continue doing normal work, like servicing other requests.

How do I use adbapi?

Rather than creating a database connection directly, use the adbapi.ConnectionPool class to manage a connections for
you. This allows adbapi to use multiple connections, one per thread. This is easy:

Using the "dbmodule" from the previous example, create a ConnectionPool
from twisted.enterprise import adbapi
dbpool = adbapi.ConnectionPool("dbmodule", 'mydb', 'andrew', 'password')

Things to note about doing this:

• There is no need to import dbmodule directly. You just pass the name to adbapi.ConnectionPool‘s constructor.

• The parameters you would pass to dbmodule.connect are passed as extra arguments to adbapi.ConnectionPool‘s
constructor. Keyword parameters work as well.

Now we can do a database query:

equivalent of cursor.execute(statement), return cursor.fetchall():
def getAge(user):

return dbpool.runQuery("SELECT age FROM users WHERE name = ?", user)

def printResult(l):
if l:

print l[0][0], "years old"
else:

print "No such user"

getAge("joe").addCallback(printResult)

This is straightforward, except perhaps for the return value of getAge. It returns a Deferred, which allows arbitrary
callbacks to be called upon completion (or upon failure). More documentation on Deferred is available here.

2.1. Developer Guides 229

http://www.python.org/dev/peps/pep-0249/
https://twistedmatrix.com/documents/16.0.0/api/twisted.enterprise.adbapi.html
http://www.python.org/dev/peps/pep-0249/
https://twistedmatrix.com/documents/16.0.0/api/twisted.enterprise.adbapi.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.enterprise.adbapi.ConnectionPool.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.enterprise.adbapi.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.enterprise.adbapi.ConnectionPool.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.enterprise.adbapi.ConnectionPool.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.html

Twisted Documentation, Release 16.0.0

In addition to runQuery, there is also runOperation and runInteraction that gets called with a callable
(e.g. a function). The function will be called in the thread with a adbapi.Transaction, which basically mimics a DB-
API cursor. In all cases a database transaction will be committed after your database usage is finished, unless an
exception is raised in which case it will be rolled back.

def _getAge(txn, user):
this will run in a thread, we can use blocking calls
txn.execute("SELECT * FROM foo")
... other cursor commands called on txn ...
txn.execute("SELECT age FROM users WHERE name = ?", user)
result = txn.fetchall()
if result:

return result[0][0]
else:

return None

def getAge(user):
return dbpool.runInteraction(_getAge, user)

def printResult(age):
if age != None:

print age, "years old"
else:

print "No such user"

getAge("joe").addCallback(printResult)

Also worth noting is that these examples assumes that dbmodule uses the “qmarks” paramstyle (see the DB-API
specification). If your dbmodule uses a different paramstyle (e.g. pyformat) then use that. Twisted doesn’t at-
tempt to offer any sort of magic parameter munging – runQuery(query, params, ...) maps directly onto
cursor.execute(query, params, ...).

Examples of various database adapters

Notice that the first argument is the module name you would usually import and get connect(...) from, and that
following arguments are whatever arguments you’d call connect(...) with.

from twisted.enterprise import adbapi

PostgreSQL PyPgSQL
cp = adbapi.ConnectionPool("pyPgSQL.PgSQL", database="test")

MySQL
cp = adbapi.ConnectionPool("MySQLdb", db="test")

And that’s it!

That’s all you need to know to use a database from within Twisted. You probably should read the adbapi module’s
documentation to get an idea of the other functions it has, but hopefully this document presents the core ideas.

230 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.enterprise.adbapi.Transaction.html

Twisted Documentation, Release 16.0.0

2.1.32 Parsing command-lines with usage.Options

Introduction

There is frequently a need for programs to parse a UNIX-like command line program: options preceded by - or --
, sometimes followed by a parameter, followed by a list of arguments. The twisted.python.usage provides a class,
Options , to facilitate such parsing.

While Python has the getopt module for doing this, it provides a very low level of abstraction for options. Twisted
has a higher level of abstraction, in the class twisted.python.usage.Options . It uses Python’s reflection facilities to
provide an easy to use yet flexible interface to the command line. While most command line processors either force
the application writer to write their own loops, or have arbitrary limitations on the command line (the most common
one being not being able to have more than one instance of a specific option, thus rendering the idiom program -v
-v -v impossible), Twisted allows the programmer to decide how much control they want.

The Options class is used by subclassing. Since a lot of time it will be used in the twisted.tap package, where the
local conventions require the specific options parsing class to also be called Options , it is usually imported with

from twisted.python import usage

Boolean Options

For simple boolean options, define the attribute optFlags like this:

class Options(usage.Options):

optFlags = [["fast", "f", "Act quickly"], ["safe", "s", "Act safely"]]

optFlags should be a list of 3-lists. The first element is the long name, and will be used on the command line as
--fast . The second one is the short name, and will be used on the command line as -f . The last element is a
description of the flag and will be used to generate the usage information text. The long name also determines the
name of the key that will be set on the Options instance. Its value will be 1 if the option was seen, 0 otherwise. Here
is an example for usage:

class Options(usage.Options):

optFlags = [
["fast", "f", "Act quickly"],
["good", "g", "Act well"],
["cheap", "c", "Act cheaply"]

]

command_line = ["-g", "--fast"]

options = Options()
try:

options.parseOptions(command_line)
except usage.UsageError, errortext:

print '%s: %s' % (sys.argv[0], errortext)
print '%s: Try --help for usage details.' % (sys.argv[0])
sys.exit(1)

if options['fast']:
print "fast",

if options['good']:
print "good",

if options['cheap']:

2.1. Developer Guides 231

https://twistedmatrix.com/documents/16.0.0/api/twisted.python.usage.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.python.usage.Options.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.tap.html

Twisted Documentation, Release 16.0.0

print "cheap",
print

The above will print fast good .

Note here that Options fully supports the mapping interface. You can access it mostly just like you can access any
other dict. Options are stored as mapping items in the Options instance: parameters as ‘paramname’: ‘value’ and flags
as ‘flagname’: 1 or 0.

Inheritance, Or: How I Learned to Stop Worrying and Love the Superclass

Sometimes there is a need for several option processors with a unifying core. Perhaps you want all your commands to
understand -q /--quiet means to be quiet, or something similar. On the face of it, this looks impossible: in Python,
the subclass’s optFlags would shadow the superclass’s. However, usage.Options uses special reflection code
to get all of the optFlags defined in the hierarchy. So the following:

class BaseOptions(usage.Options):

optFlags = [["quiet", "q", None]]

class SpecificOptions(BaseOptions):

optFlags = [
["fast", "f", None], ["good", "g", None], ["cheap", "c", None]

]

Is the same as:

class SpecificOptions(usage.Options):

optFlags = [
["quiet", "q", "Silence output"],
["fast", "f", "Run quickly"],
["good", "g", "Don't validate input"],
["cheap", "c", "Use cheap resources"]

]

Parameters

Parameters are specified using the attribute optParameters . They must be given a default. If you want to make
sure you got the parameter from the command line, give a non-string default. Since the command line only has strings,
this is completely reliable.

Here is an example:

from twisted.python import usage

class Options(usage.Options):

optFlags = [
["fast", "f", "Run quickly"],
["good", "g", "Don't validate input"],
["cheap", "c", "Use cheap resources"]

]
optParameters = [["user", "u", None, "The user name"]]

232 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

config = Options()
try:

config.parseOptions() # When given no argument, parses sys.argv[1:]
except usage.UsageError, errortext:

print '%s: %s' % (sys.argv[0], errortext)
print '%s: Try --help for usage details.' % (sys.argv[0])
sys.exit(1)

if config['user'] is not None:
print "Hello", config['user']

print "So, you want it:"

if config['fast']:
print "fast",

if config['good']:
print "good",

if config['cheap']:
print "cheap",

print

Like optFlags , optParameters works smoothly with inheritance.

Option Subcommands

It is useful, on occasion, to group a set of options together based on the logical “action” to which they belong. For
this, the usage.Options class allows you to define a set of “subcommands” , each of which can provide its own
usage.Options instance to handle its particular options.

Here is an example for an Options class that might parse options like those the cvs program takes

from twisted.python import usage

class ImportOptions(usage.Options):
optParameters = [

['module', 'm', None, None], ['vendor', 'v', None, None],
['release', 'r', None]

]

class CheckoutOptions(usage.Options):
optParameters = [['module', 'm', None, None], ['tag', 'r', None, None]]

class Options(usage.Options):
subCommands = [['import', None, ImportOptions, "Do an Import"],

['checkout', None, CheckoutOptions, "Do a Checkout"]]

optParameters = [
['compression', 'z', 0, 'Use compression'],
['repository', 'r', None, 'Specify an alternate repository']

]

config = Options(); config.parseOptions()
if config.subCommand == 'import':

doImport(config.subOptions)
elif config.subCommand == 'checkout':

doCheckout(config.subOptions)

The subCommands attribute of Options directs the parser to the two other Options subclasses when the strings
"import" or "checkout" are present on the command line. All options after the given command string are passed

2.1. Developer Guides 233

Twisted Documentation, Release 16.0.0

to the specified Options subclass for further parsing. Only one subcommand may be specified at a time. After parsing
has completed, the Options instance has two new attributes - subCommand and subOptions - which hold the
command string and the Options instance used to parse the remaining options.

Generic Code For Options

Sometimes, just setting an attribute on the basis of the options is not flexible enough. In those cases, Twisted does not
even attempt to provide abstractions such as “counts” or “lists” , but rather lets you call your own method, which will
be called whenever the option is encountered.

Here is an example of counting verbosity

from twisted.python import usage

class Options(usage.Options):

def __init__(self):
usage.Options.__init__(self)
self['verbosity'] = 0 # default

def opt_verbose(self):
self['verbosity'] = self['verbosity']+1

def opt_quiet(self):
self['verbosity'] = self['verbosity']-1

opt_v = opt_verbose
opt_q = opt_quiet

Command lines that look like command -v -v -v -v will increase verbosity to 4, while command -q -q -q
will decrease verbosity to -3.

The usage.Options class knows that these are parameter-less options, since the methods do not receive an argument.
Here is an example for a method with a parameter:

from twisted.python import usage

class Options(usage.Options):

def __init__(self):
usage.Options.__init__(self)
self['symbols'] = []

def opt_define(self, symbol):
self['symbols'].append(symbol)

opt_D = opt_define

This example is useful for the common idiom of having command -DFOO -DBAR to define symbols.

Parsing Arguments

usage.Options does not stop helping when the last parameter is gone. All the other arguments are sent into a
function which should deal with them. Here is an example for a cmp like command.

from twisted.python import usage

234 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.python.usage.Options.html

Twisted Documentation, Release 16.0.0

class Options(usage.Options):

optParameters = [["max_differences", "d", 1, None]]

def parseArgs(self, origin, changed):
self['origin'] = origin
self['changed'] = changed

The command should look like command origin changed .

If you want to have a variable number of left-over arguments, just use def parseArgs(self, *args): . This
is useful for commands like the UNIX cat(1) .

Post Processing

Sometimes, you want to perform post processing of options to patch up inconsistencies, and the like. Here is an
example:

from twisted.python import usage

class Options(usage.Options):

optFlags = [
["fast", "f", "Run quickly"],
["good", "g", "Don't validate input"],
["cheap", "c", "Use cheap resources"]

]

def postOptions(self):
if self['fast'] and self['good'] and self['cheap']:

raise usage.UsageError, "can't have it all, brother"

Type enforcement

By default, all options are handled as strings. You may want to enforce the type of your option in some specific case,
the classic example being port number. Any callable can be specified in the fifth row of optParameters and will
be called with the string value passed in parameter.

from twisted.python import usage

class Options(usage.Options):
optParameters = [

["shiny_integer", "s", 1, None, int],
["dummy_float", "d", 3.14159, None, float],

]

Note that default values are not coerced, so you should either declare it with the good type (as above) or handle it when
you use your options.

The coerce function may have a coerceDoc attribute, the content of which will be printed after the documentation of
the option. It’s particularly useful for reusing the function at multiple places.

def oneTwoThree(val):
val = int(val)
if val not in range(1, 4):

raise ValueError("Not in range")
return val

2.1. Developer Guides 235

Twisted Documentation, Release 16.0.0

oneTwoThree.coerceDoc = "Must be 1, 2 or 3."

from twisted.python import usage

class Options(usage.Options):
optParameters = [["one_choice", "o", 1, None, oneTwoThree]]

This example code will print the following help when added to your program:

$ python myprogram.py --help
Usage: myprogram [options]
Options:

-o, --one_choice= [default: 0]. Must be 1, 2 or 3.

Shell tab-completion

The Options class may provide tab-completion to interactive command shells. Only zsh is supported at present,
but there is some interest in supporting bash in the future.

Support is automatic for all of the commands shipped with Twisted. Zsh has shipped, for a number of years, a
completion function which ties in to the support provided by the Options class.

If you are writing a twistd plugin, then tab-completion for your twistd sub-command is also automatic.

For other commands you may easily provide zsh tab-completion support. Copy the file “twisted/python/twisted-
completion.zsh” and name it something like “_mycommand”. A leading underscore with no extension is zsh’s con-
vention for completion function files.

Edit the new file and change the first line to refer only to your new command(s), like so:

#compdef mycommand

Then ensure this file is made available to the shell by placing it in one of the directories appearing in zsh’s $fpath.
Restart zsh, and ensure advanced completion is enabled (autoload -U compinit; compinit) . You should
then be able to type the name of your command and press Tab to have your command-line options completed.

Completion metadata

Optionally, a special attribute, compData , may be defined on your Options subclass in order to provide more
information to the shell-completion system. The attribute should be an instance of I DON’T KNOW WHAT TO DO
WITH THIS LINK!

In addition, compData may be defined on parent classes in your inheritance hiearchy. The information from each I
DON’T KNOW WHAT TO DO WITH THIS LINK!

2.1.33 DirDBM: Directory-based Storage

dirdbm.DirDBM

twisted.persisted.dirdbm.DirDBM is a DBM-like storage system. That is, it stores mappings between keys and values,
like a Python dictionary, except that it stores the values in files in a directory - each entry is a different file. The keys
must always be strings, as are the values. Other than that, DirDBM objects act just like Python dictionaries.

DirDBM is useful for cases when you want to store small amounts of data in an organized fashion, without having to
deal with the complexity of a RDBMS or other sophisticated database. It is simple, easy to use, cross-platform, and
doesn’t require any external C libraries, unlike Python’s built-in DBM modules.

236 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.persisted.dirdbm.DirDBM.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.persisted.dirdbm.DirDBM.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.persisted.dirdbm.DirDBM.html

Twisted Documentation, Release 16.0.0

>>> from twisted.persisted import dirdbm
>>> d = dirdbm.DirDBM("/tmp/dir")
>>> d["librarian"] = "ook"
>>> d["librarian"]
'ook'
>>> d.keys()
['librarian']
>>> del d["librarian"]
>>> d.items()
[]

dirdbm.Shelf

Sometimes it is neccessary to persist more complicated objects than strings. With some care, dirdbm.Shelf can trans-
parently persist them. Shelf works exactly like DirDBM , except that the values (but not the keys) can be arbitrary
picklable objects. However, notice that mutating an object after it has been stored in the Shelf has no effect on the
Shelf. When mutating objects, it is neccessary to explicitly store them back in the Shelf afterwards:

>>> from twisted.persisted import dirdbm
>>> d = dirdbm.Shelf("/tmp/dir2")
>>> d["key"] = [1, 2]
>>> d["key"]
[1, 2]
>>> l = d["key"]
>>> l.append(3)
>>> d["key"]
[1, 2]
>>> d["key"] = l
>>> d["key"]
[1, 2, 3]

2.1.34 Writing tests for Twisted code using Trial

Trial basics

Trial is Twisted’s testing framework. It provides a library for writing test cases and utility functions for working
with the Twisted environment in your tests, and a command-line utility for running your tests. Trial is built on the
Python standard library’s unittest module. For more information on how Trial finds tests, see the loadModule
documentation.

To run all the Twisted tests, do:

$ trial twisted

Refer to the Trial man page for other command-line options.

Trial directories

You might notice a new _trial_temp folder in the current working directory after Trial completes the tests. This
folder is the working directory for the Trial process. It can be used by unit tests and allows them to write whatever
data they like to disk, and not worry about polluting the current working directory.

Folders named _trial_temp-<counter> are created if two instances of Trial are run in parallel from the same
directory, so as to avoid giving two different test-runs the same temporary directory.

2.1. Developer Guides 237

https://twistedmatrix.com/documents/16.0.0/api/twisted.persisted.dirdbm.Shelf.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.trial.runner.TestLoader.loadModule.html

Twisted Documentation, Release 16.0.0

The twisted.python.lockfile utility is used to lock the _trial_temp directories. On Linux, this results in symlinks
to pids. On Windows, directories are created with a single file with a pid as the contents. These lock files will be
cleaned up if Trial exits normally and otherwise they will be left behind. They should be cleaned up the next time Trial
tries to use the directory they lock, but it’s also safe to delete them manually if desired.

Twisted-specific quirks: reactor, Deferreds, callLater

The standard Python unittest framework, from which Trial is derived, is ideal for testing code with a fairly linear
flow of control. Twisted is an asynchronous networking framework which provides a clean, sensible way to establish
functions that are run in response to events (like timers and incoming data), which creates a highly non-linear flow of
control. Trial has a few extensions which help to test this kind of code. This section provides some hints on how to
use these extensions and how to best structure your tests.

Leave the Reactor as you found it

Trial runs the entire test suite (over four thousand tests) in a single process, with a single reactor. Therefore it is
important that your test leave the reactor in the same state as it found it. Leftover timers may expire during somebody
else’s unsuspecting test. Leftover connection attempts may complete (and fail) during a later test. These lead to
intermittent failures that wander from test to test and are very time-consuming to track down.

If your test leaves event sources in the reactor, Trial will fail the test. The tearDown method is a good place to
put cleanup code: it is always run regardless of whether your test passes or fails (like a finally clause in a try-
except-finally construct). Exceptions in tearDown are flagged as errors and flunk the test. TestCase.addCleanup
is another useful tool for cleaning up. With it, you can register callables to clean up resources as the test allocates
them. Generally, code should be written so that only resources allocated in the tests need to be cleaned up in the tests.
Resources which are allocated internally by the implementation should be cleaned up by the implementation.

If your code uses Deferreds or depends on the reactor running, you can return a Deferred from your test method, setUp,
or tearDown and Trial will do the right thing. That is, it will run the reactor for you until the Deferred has triggered
and its callbacks have been run. Don’t use reactor.run() , reactor.stop() , reactor.crash() or
reactor.iterate() in your tests.

Calls to reactor.callLater create IDelayedCall s. These need to be run or cancelled during a test, otherwise
they will outlive the test. This would be bad, because they could interfere with a later test, causing confusing failures
in unrelated tests! For this reason, Trial checks the reactor to make sure there are no leftover IDelayedCall s in the
reactor after a test, and will fail the test if there are. The cleanest and simplest way to make sure this all works is to
return a Deferred from your test.

Similarly, sockets created during a test should be closed by the end of the test. This applies to both listening ports and
client connections. So, calls to reactor.listenTCP (and listenUNIX , and so on) return IListeningPort s, and
these should be cleaned up before a test ends by calling their stopListening method. Calls to reactor.connectTCP
return IConnector s, which should be cleaned up by calling their disconnect method. Trial will warn about unclosed
sockets.

The golden rule is: If your tests call a function which returns a Deferred, your test should return a Deferred.

Using Timers to Detect Failing Tests

It is common for tests to establish some kind of fail-safe timeout that will terminate the test in case something unex-
pected has happened and none of the normal test-failure paths are followed. This timeout puts an upper bound on the
time that a test can consume, and prevents the entire test suite from stalling because of a single test. This is especially
important for the Twisted test suite, because it is run automatically by the buildbot whenever changes are committed
to the Subversion repository.

238 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.python.lockfile.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.trial.unittest.TestCase.addCleanup.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IDelayedCall.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IDelayedCall.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IListeningPort.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IListeningPort.stopListening.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IConnector.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IConnector.disconnect.html

Twisted Documentation, Release 16.0.0

The way to do this in Trial is to set the .timeout attribute on your unit test method. Set the attribute to the number
of seconds you wish to elapse before the test raises a timeout error. Trial has a default timeout which will be applied
even if the timeout attribute is not set. The Trial default timeout is usually sufficient and should be overridden only
in unusual cases.

Interacting with warnings in tests

Trial includes specific support for interacting with Python’s warningsmodule. This support allows warning-emitting
code to be written test-driven, just as any other code would be. It also improves the way in which warnings reporting
when a test suite is running.

TestCase.flushWarnings allows tests to be written which make assertions about what warnings have been emitted
during a particular test method. In order to test a warning with flushWarnings , write a test which first invokes the
code which will emit a warning and then calls flushWarnings and makes assertions about the result. For example:

class SomeWarningsTests(TestCase):
def test_warning(self):

warnings.warn("foo is bad")
self.assertEqual(len(self.flushWarnings()), 1)

Warnings emitted in tests which are not flushed will be included by the default reporter in its output after the result of
the test. If Python’s warnings filter system (see the-W command option to Python) is configured to treat a warning as
an error, then unflushed warnings will causes tests to fail and will be included in the summary section of the default
reporter. Note that unlike usual operation, when warnings.warn is called as part of a test method, it will not raise
an exception when warnings have been configured as errors. However, if called outside of a test method (for example,
at module scope in a test module or a module imported by a test module) then it will raise an exception.

Parallel test

In many situations, your unit tests may run faster if they are allowed to run in parallel, such that blocking I/O calls
allow other tests to continue. Trial, like unittest, supports the -j parameter. Run trial -j 3 to run 3 test runners at
the same time.

This requires care in your test creation. Obviously, you need to ensure that your code is otherwise content to work in
a parallel fashion while working within Twisted... and if you are using weird global variables in places, parallel tests
might reveal this.

However, if you have a test that fires up a schema on an external database in the setUp function, does some operations
on it in the test, and then deletes that schema in the tearDown function, your tests will behave in an unpredictable
fashion as they tromp upon each other if they have their own schema. And this won’t actually indicate a real error in
your code, merely a testing-specific race-condition.

2.1.35 Extremely Low-Level Socket Operations

Introduction

Beyond supporting streams of data (SOCK_STREAM) or datagrams (SOCK_DGRAM), POSIX sockets have addi-
tional features not accessible via send(2) and recv(2). These features include things like scatter/gather I/O, duplicating
file descriptors into other processes, and accessing out-of-band data.

Twisted includes a wrapper around the two C APIs which make these things possible, sendmsg and recvmsg . This
document covers their usage. It is intended for Twisted maintainers. Application developers looking for this function-
ality should look for the high-level APIs Twisted provides on top of these wrappers.

2.1. Developer Guides 239

https://twistedmatrix.com/documents/16.0.0/api/twisted.trial.unittest.TestCase.flushWarnings.html
http://docs.python.org/using/cmdline.html#cmdoption-unittest-discover-W
http://www.opengroup.org/onlinepubs/007908799/xns/sendmsg.html
http://www.opengroup.org/onlinepubs/007908799/xns/recvmsg.html

Twisted Documentation, Release 16.0.0

sendmsg

sendmsg(2) exposes nearly all sender-side functionality of a socket. For a SOCK_STREAM socket, it can send
bytes that become part of the stream of data being carried over the connection. For a SOCK_DGRAM socket, it can
send bytes that become datagrams sent from the socket. It can send data from multiple memory locations (gather I/O).
Over AF_UNIX sockets, it can copy file descriptors into whichever process is receiving on the other side. The wrapper
included in Twisted, sendmsg, exposes many (but not all) of these features. This document covers the usage of the
features it does expose. The primary limitation of this wrapper is that the interface supports sending only one iovec at
a time.

recvmsg

Likewise, recvmsg(2) exposes nearly all the receiver-side functionality of a socket. It can receive stream data over
from a SOCK_STREAM socket or datagrams from a SOCK_DGRAM socket. It can receive that data into multiple
memory locations (scatter I/O), and it can receive those copied file descriptors. The wrapper included in Twisted,
recvmsg, exposes many (but not all) of these features. This document covers the usage of the features it does expose.
The primary limitation of this wrapper is that the interface supports receiving only one iovec at a time.

Sending And Receiving Regular Data

sendmsg can be used in a way which makes it equivalent to using the send call. The first argument to sendmsg is (in
this case and all others) a socket over which to send the data. The second argument is a bytestring giving the data to
send.

On the other end, recvmsg can be used to replace a recv call. The first argument to recvmsg is (again, in all cases) a
socket over which to receive the data. The second argument is an integer giving the maximum number of bytes of data
to receive.

send_replacement.py

Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

"""
Demonstration of sending bytes over a TCP connection using sendmsg.
"""

from __future__ import print_function

from socket import socketpair

from twisted.python.sendmsg import sendmsg, recvmsg

def main():
foo, bar = socketpair()
sent = sendmsg(foo, b"Hello, world")
print("Sent", sent, "bytes")
(received, ancillary, flags) = recvmsg(bar, 1024)
print("Received", repr(received))
print("Extra stuff, boring in this case", flags, ancillary)

if __name__ == '__main__':
main()

240 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.python.sendmsg.sendmsg.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.python.sendmsg.recvmsg.html

Twisted Documentation, Release 16.0.0

Copying File Descriptors

Used with an AF_UNIX socket, sendmsg send a copy of a file descriptor into whatever process is receiving on the
other end of the socket. This is done using the ancillary data argument. Ancillary data consists of a list of three-tuples.
A three-tuple constructed with SOL_SOCKET, SCM_RIGHTS, and a platform-endian packed file descriptor number
will copy that file descriptor.

File descriptors copied this way must be received using a recvmsg call. No special arguments are required to receive
these descriptors. They will appear, encoded as a native-order string, in the ancillary data list returned by recvmsg.

copy_descriptor.py

Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

"""
Demonstration of copying a file descriptor over an AF_UNIX connection using
sendmsg.
"""

from __future__ import print_function

from os import pipe, read, write
from socket import SOL_SOCKET, socketpair
from struct import unpack, pack

from twisted.python.sendmsg import SCM_RIGHTS, sendmsg, recvmsg

def main():
foo, bar = socketpair()
reader, writer = pipe()

Send a copy of the descriptor. Notice that there must be at least one
byte of normal data passed in.
sent = sendmsg(

foo, b"\x00", [(SOL_SOCKET, SCM_RIGHTS, pack("i", reader))])

Receive the copy, including that one byte of normal data.
data, ancillary, flags = recvmsg(bar, 1024)
duplicate = unpack("i", ancillary[0][2])[0]

Demonstrate that the copy works just like the original
write(writer, b"Hello, world")
print("Read from original (%d): %r" % (reader, read(reader, 6)))
print("Read from duplicate (%d): %r" % (duplicate, read(duplicate, 6)))

if __name__ == '__main__':
main()

A synchronous M essaging P rotocol Overview

A synchronous M essaging P rotocol Overview The purpose of this guide is to describe the uses for and usage of
twisted.protocols.amp beyond what is explained in the API documentation. It will show you how to implement an
AMP server which can respond to commands or interact directly with individual messages. It will also show you how
to implement an AMP client which can issue commands to a server.

AMP is a bidirectional command/response-oriented protocol intended to be extended with application-specific re-
quest types and handlers. Various simple data types are supported and support for new data types can be added by
applications.

2.1. Developer Guides 241

https://twistedmatrix.com/documents/16.0.0/api/twisted.protocols.amp.html

Twisted Documentation, Release 16.0.0

2.1.36 Setting Up

AMP runs over a stream-oriented connection-based protocol, such as TCP or SSL. Before you can use any features
of the AMP protocol, you need a connection. The protocol class to use to establish an AMP connection is AMP .
Connection setup works as it does for almost all protocols in Twisted. For example, you can set up a listening AMP
server using a server endpoint:

basic_server.tac

from twisted.protocols.amp import AMP
from twisted.internet import reactor
from twisted.internet.protocol import Factory
from twisted.internet.endpoints import TCP4ServerEndpoint
from twisted.application.service import Application
from twisted.application.internet import StreamServerEndpointService

application = Application("basic AMP server")

endpoint = TCP4ServerEndpoint(reactor, 8750)
factory = Factory()
factory.protocol = AMP
service = StreamServerEndpointService(endpoint, factory)
service.setServiceParent(application)

And you can connect to an AMP server using a client endpoint:

basic_client.py

if __name__ == '__main__':
import basic_client
raise SystemExit(basic_client.main())

from sys import stdout

from twisted.python.log import startLogging, err
from twisted.protocols.amp import AMP
from twisted.internet import reactor
from twisted.internet.protocol import Factory
from twisted.internet.endpoints import TCP4ClientEndpoint

def connect():
endpoint = TCP4ClientEndpoint(reactor, "127.0.0.1", 8750)
return endpoint.connect(Factory.forProtocol(AMP))

def main():
startLogging(stdout)

d = connect()
d.addErrback(err, "Connection failed")
def done(ignored):

reactor.stop()
d.addCallback(done)

reactor.run()

242 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.protocols.amp.AMP.html

Twisted Documentation, Release 16.0.0

2.1.37 Commands

Either side of an AMP connection can issue a command to the other side. Each kind of command is represented as a
subclass of Command . A Command defines arguments, response values, and error conditions.

from twisted.protocols.amp import Integer, String, Unicode, Command

class UsernameUnavailable(Exception):
pass

class RegisterUser(Command):
arguments = [('username', Unicode()),

('publickey', String())]

response = [('uid', Integer())]

errors = {UsernameUnavailable: 'username-unavailable'}

The definition of the command’s signature - its arguments, response, and possible error conditions - is separate from
the implementation of the behavior to execute when the command is received. The Command subclass only defines
the former.

Commands are issued by calling callRemote on either side of the connection. This method returns a Deferred
which eventually fires with the result of the command.

command_client.py

if __name__ == '__main__':
import command_client
raise SystemExit(command_client.main())

from sys import stdout

from twisted.python.log import startLogging, err
from twisted.protocols.amp import Integer, String, Unicode, Command
from twisted.internet import reactor

from basic_client import connect

class UsernameUnavailable(Exception):
pass

class RegisterUser(Command):
arguments = [('username', Unicode()),

('publickey', String())]

response = [('uid', Integer())]

errors = {UsernameUnavailable: 'username-unavailable'}

def main():
startLogging(stdout)

d = connect()
def connected(protocol):

return protocol.callRemote(
RegisterUser,

2.1. Developer Guides 243

https://twistedmatrix.com/documents/16.0.0/api/twisted.protocols.amp.Command.html

Twisted Documentation, Release 16.0.0

username=u'alice',
publickey='ssh-rsa AAAAB3NzaC1yc2 alice@actinium')

d.addCallback(connected)

def registered(result):
print 'Registration result:', result

d.addCallback(registered)

d.addErrback(err, "Failed to register")

def finished(ignored):
reactor.stop()

d.addCallback(finished)

reactor.run()

2.1.38 Locators

The logic for handling a command can be specified as an object separate from the AMP instance which interprets and
formats bytes over the network.

from twisted.protocols.amp import CommandLocator
from twisted.python.filepath import FilePath

class UsernameUnavailable(Exception):
pass

class UserRegistration(CommandLocator):
uidCounter = 0

@RegisterUser.responder
def register(self, username, publickey):

path = FilePath(username)
if path.exists():

raise UsernameUnavailable()
self.uidCounter += 1
path.setContent('%d %s\n' % (self.uidCounter, publickey))
return self.uidCounter

When you define a separate CommandLocator subclass, use it by passing an instance of it to the AMP initializer.

factory = Factory()
factory.protocol = lambda: AMP(locator=UserRegistration())

If no locator is passed in, AMP acts as its own locator. Command responders can be defined on an AMP subclass, just
as the responder was defined on the UserRegistration example above.

2.1.39 Box Receivers

AMP conversations consist of an exchange of messages called boxes . A box consists of a sequence of pairs of key and
value (for example, the pair username and alice). Boxes are generally represented as dict instances. Normally
boxes are passed back and forth to implement the command request/response features described above. The logic for
handling each box can be specified as an object separate from the AMP instance.

from zope.interface import implements

244 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

from twisted.protocols.amp import IBoxReceiver

class BoxReflector(object):
implements(IBoxReceiver)

def startReceivingBoxes(self, boxSender):
self.boxSender = boxSender

def ampBoxReceived(self, box):
self.boxSender.sendBox(box)

def stopReceivingBoxes(self, reason):
self.boxSender = None

These methods parallel those of IProtocol . Startup notification is given by startReceivingBoxes
. The argument passed to it is an IBoxSender provider, which can be used to send boxes back out over
the network. ampBoxReceived delivers notification for a complete box having been received. And last,
stopReceivingBoxes notifies the object that no more boxes will be received and no more can be sent. The
argument passed to it is a Failure which may contain details about what caused the conversation to end.

To use a custom IBoxReceiver , pass it to the AMP initializer.

factory = Factory()
factory.protocol = lambda: AMP(boxReceiver=BoxReflector())

If no box receiver is passed in, AMP acts as its own box receiver. It handles boxes by treating them as command
requests or responses and delivering them to the appropriate responder or as a result to a callRemote Deferred .

2.1.40 Overview of Twisted Spread

Perspective Broker (affectionately known as “PB”) is an asynchronous, symmetric 1 network protocol for secure,
remote method calls and transferring of objects. PB is “translucent, not transparent” , meaning that it is very visible
and obvious to see the difference between local method calls and potentially remote method calls, but remote method
calls are still extremely convenient to make, and it is easy to emulate them to have objects which work both locally
and remotely.

PB supports user-defined serialized data in return values, which can be either copied each time the value is returned,
or “cached” : only copied once and updated by notifications.

PB gets its name from the fact that access to objects is through a “perspective” . This means that when you are
responding to a remote method call, you can establish who is making the call.

Rationale

No other currently existing protocols have all the properties of PB at the same time. The particularly interesting
combination of attributes, though, is that PB is flexible and lightweight, allowing for rapid development, while still
powerful enough to do two-way method calls and user-defined data types.

It is important to have these attributes in order to allow for a protocol which is extensible. One of the facets of this
flexibility is that PB can integrate an arbitrary number of services could be aggregated over a single connection, as
well as publish and call new methods on existing objects without restarting the server or client.

1 There is a negotiation phase for the banana serialization protocol with particular roles for listener and initiator, so it’s not completely
symmetric, but after the connection is fully established, the protocol is completely symmetrical.

2.1. Developer Guides 245

Twisted Documentation, Release 16.0.0

2.1.41 Introduction to Perspective Broker

Introduction

Suppose you find yourself in control of both ends of the wire: you have two programs that need to talk to each other,
and you get to use any protocol you want. If you can think of your problem in terms of objects that need to make
method calls on each other, then chances are good that you can use Twisted’s Perspective Broker protocol rather than
trying to shoehorn your needs into something like HTTP, or implementing yet another RPC mechanism 1 .

The Perspective Broker system (abbreviated “PB” , spawning numerous sandwich-related puns) is based upon a few
central concepts:

• serialization : taking fairly arbitrary objects and types, turning them into a chunk of bytes, sending them over
a wire, then reconstituting them on the other end. By keeping careful track of object ids, the serialized objects
can contain references to other objects and the remote copy will still be useful.

• remote method calls : doing something to a local object and causing a method to get run on a distant one. The
local object is called a RemoteReference , and you “do something” by running its .callRemote method.

This document will contain several examples that will (hopefully) appear redundant and verbose once you’ve figured
out what’s going on. To begin with, much of the code will just be labelled “magic” : don’t worry about how these
parts work yet. It will be explained more fully later.

Object Roadmap

To start with, here are the major classes, interfaces, and functions involved in PB, with links to the file where they are
defined (all of which are under twisted/, of course). Don’t worry about understanding what they all do yet: it’s easier
to figure them out through their interaction than explaining them one at a time.

• Factory : internet/protocol.py

• PBServerFactory : spread/pb.py

• Broker : spread/pb.py

Other classes that are involved at some point:

• RemoteReference : spread/pb.py

• pb.Root : spread/pb.py , actually defined as twisted.spread.flavors.Root in
spread/flavors.py

• pb.Referenceable : spread/pb.py , actually defined as twisted.spread.flavors.Referenceable
in spread/flavors.py

Classes and interfaces that get involved when you start to care about authorization and security:

• Portal : cred/portal.py

• IRealm : cred/portal.py

• IPerspective : spread/pb.py , which you will usually be interacting with via pb.Avatar (a basic implementor
of the interface).

1 Most of Twisted is like this. Hell, most of Unix is like this: if you think it would be useful, someone else has probably thought that way in the
past, and acted on it, and you can take advantage of the tool they created to solve the same problem you’re facing now.

246 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.RemoteReference.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.protocol.Factory.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.PBServerFactory.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.Broker.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.RemoteReference.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.Root.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.Referenceable.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.cred.portal.Portal.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.cred.portal.IRealm.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.IPerspective.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.Avatar.html

Twisted Documentation, Release 16.0.0

Subclassing and Implementing

Technically you can subclass anything you want, but technically you could also write a whole new framework, which
would just waste a lot of time. Knowing which classes are useful to subclass or which interfaces to implement is one
of the bits of knowledge that’s crucial to using PB (and all of Twisted) successfully. Here are some hints to get started:

• pb.Root , pb.Referenceable : you’ll subclass these to make remotely-referenceable objects (i.e., objects which
you can call methods on remotely) using PB. You don’t need to change any of the existing behavior, just inherit
all of it and add the remotely-accessible methods that you want to export.

• pb.Avatar : You’ll be subclassing this when you get into PB programming with authorization. This is an imple-
mentor of IPerspective.

• ICredentialsChecker : Implement this if you want to authenticate your users against some sort of data store: i.e.,
an LDAP database, an RDBMS, etc. There are already a few implementations of this for various back-ends in
twisted.cred.checkers.

Things you can Call Remotely

At this writing, there are three “flavors” of objects that can be accessed remotely through RemoteReference objects.
Each of these flavors has a rule for how the callRemote message is transformed into a local method call on the
server. In order to use one of these “flavors” , subclass them and name your published methods with the appropriate
prefix.

• twisted.spread.pb.IPerspective implementors

This is the first interface we deal with. It is a “perspective” onto your PB application. Perspectives are slightly
special because they are usually the first object that a given user can access in your application (after they log
on). A user should only receive a reference to their own perspective. PB works hard to verify, as best it can, that
any method that can be called on a perspective directly is being called on behalf of the user who is represented
by that perspective. (Services with unusual requirements for “on behalf of” , such as simulations with the ability
to posses another player’s avatar, are accomplished by providing indirected access to another user’s perspective.)

Perspectives are not usually serialized as remote references, so do not return an IPerspective-implementor di-
rectly.

The way most people will want to implement IPerspective is by subclassing pb.Avatar. Remotely accessible
methods on pb.Avatar instances are named with the perspective_ prefix.

• twisted.spread.pb.Referenceable

Referenceable objects are the simplest kind of PB object. You can call methods on them and return them from
methods to provide access to other objects’ methods.

However, when a method is called on a Referenceable, it’s not possible to tell who called it.

Remotely accessible methods on Referenceables are named with the remote_ prefix.

• twisted.spread.pb.Viewable

Viewable objects are remotely referenceable objects which have the additional requirement that it must be possi-
ble to tell who is calling them. The argument list to a Viewable’s remote methods is modified in order to include
the Perspective representing the calling user.

Remotely accessible methods on Viewables are named with the view_ prefix.

Things you can Copy Remotely

In addition to returning objects that you can call remote methods on, you can return structured copies of local objects.

2.1. Developer Guides 247

https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.Root.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.Referenceable.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.Avatar.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.cred.checkers.ICredentialsChecker.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.RemoteReference.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.IPerspective.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.Referenceable.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.Viewable.html

Twisted Documentation, Release 16.0.0

There are 2 basic flavors that allow for copying objects remotely. Again, you can use these by subclassing them. In
order to specify what state you want to have copied when these are serialized, you can either use the Python default
__getstate__ or specialized method calls for that flavor.

• twisted.spread.pb.Copyable

This is the simpler kind of object that can be copied. Every time this object is returned from a method or passed
as an argument, it is serialized and unserialized.

Copyable provides a method you can override, getStateToCopyFor(perspective) , which allows you
to decide what an object will look like for the perspective who is requesting it. The perspective argument
will be the perspective which is either passing an argument or returning a result an instance of your Copyable
class.

For security reasons, in order to allow a particular Copyable class to actually be copied, you must declare a
RemoteCopy handler for that Copyable subclass. The easiest way to do this is to declare both in the same
module, like so:

from twisted.spread import flavors
class Foo(flavors.Copyable):

pass
class RemoteFoo(flavors.RemoteCopy):

pass
flavors.setUnjellyableForClass(Foo, RemoteFoo)

In this case, each time a Foo is copied between peers, a RemoteFoo will be instantiated and populated with the
Foo’s state. If you do not do this, PB will complain that there have been security violations, and it may close the
connection.

• twisted.spread.pb.Cacheable

Let me preface this with a warning: Cacheable may be hard to understand. The motivation for it may be unclear
if you don’t have some experience with real-world applications that use remote method calling of some kind.
Once you understand why you need it, what it does will likely seem simple and obvious, but if you get confused
by this, forget about it and come back later. It’s possible to use PB without understanding Cacheable at all.

Cacheable is a flavor which is designed to be copied only when necessary, and updated on the fly as changes are
made to it. When passed as an argument or a return value, if a Cacheable exists on the side of the connection it
is being copied to, it will be referred to by ID and not copied.

Cacheable is designed to minimize errors involved in replicating an object between multiple servers,
especially those related to having stale information. In order to do this, Cacheable automat-
ically registers observers and queries state atomically, together. You can override the method
getStateToCacheAndObserveFor(self, perspective, observer) in order to specify how
your observers will be stored and updated.

Similar to getStateToCopyFor , getStateToCacheAndObserveFor gets passed a perspective. It
also gets passed an observer , which is a remote reference to a “secret” fourth referenceable flavor: Remote-
Cache .

A RemoteCache is simply the object that represents your Cacheable on the other side of the connection. It is
registered using the same method as RemoteCopy , above. RemoteCache is different, however, in that it will be
referenced by its peer. It acts as a Referenceable, where all methods prefixed with observe_ will be callable
remotely. It is recommended that your object maintain a list (note: library support for this is forthcoming!) of
observers, and update them using callRemotewhen the Cacheable changes in a way that should be noticeable
to its clients.

Finally, when all references to a Cacheable from a given perspective are lost,
stoppedObserving(perspective, observer) will be called on the Cacheable , with the
same perspective/observer pair that getStateToCacheAndObserveFor was originally called with. Any

248 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.Copyable.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.Copyable.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.Cacheable.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.RemoteCache.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.RemoteCache.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.RemoteCache.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.Cacheable.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.RemoteCopy.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.Cacheable.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.Cacheable.html

Twisted Documentation, Release 16.0.0

cleanup remote calls can be made there, as well as removing the observer object from any lists which it was
previously in. Any further calls to this observer object will be invalid.

2.1.42 Using Perspective Broker

Basic Example

The first example to look at is a complete (although somewhat trivial) application. It uses PBServerFactory()
on the server side, and PBClientFactory() on the client side.

pbsimple.py

Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

from twisted.spread import pb
from twisted.internet import reactor

class Echoer(pb.Root):
def remote_echo(self, st):

print 'echoing:', st
return st

if __name__ == '__main__':
reactor.listenTCP(8789, pb.PBServerFactory(Echoer()))
reactor.run()

pbsimpleclient.py

Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

from twisted.spread import pb
from twisted.internet import reactor
from twisted.python import util

factory = pb.PBClientFactory()
reactor.connectTCP("localhost", 8789, factory)
d = factory.getRootObject()
d.addCallback(lambda object: object.callRemote("echo", "hello network"))
d.addCallback(lambda echo: 'server echoed: '+echo)
d.addErrback(lambda reason: 'error: '+str(reason.value))
d.addCallback(util.println)
d.addCallback(lambda _: reactor.stop())
reactor.run()

First we look at the server. This defines an Echoer class (derived from pb.Root), with a method called
remote_echo() . pb.Root objects (because of their inheritance of pb.Referenceable , described later) can de-
fine methods with names of the form remote_* ; a client which obtains a remote reference to that pb.Root object
will be able to invoke those methods.

The pb.Root -ish object is given to a pb.PBServerFactory () . This is a Factory object like any other: the
Protocol objects it creates for new connections know how to speak the PB protocol. The object you give to
pb.PBServerFactory() becomes the “root object” , which simply makes it available for the client to retrieve.
The client may only request references to the objects you want to provide it: this helps you implement your security

2.1. Developer Guides 249

https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.Root.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.Root.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.Referenceable.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.Root.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.Root.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.PBServerFactory.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.protocol.Factory.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.protocol.Protocol.html

Twisted Documentation, Release 16.0.0

model. Because it is so common to export just a single object (and because a remote_*method on that one can return
a reference to any other object you might want to give out), the simplest example is one where the PBServerFactory is
given the root object, and the client retrieves it.

The client side uses pb.PBClientFactory to make a connection to a given port. This is a two-step process involving
opening a TCP connection to a given host and port and requesting the root object using .getRootObject() .

Because .getRootObject() has to wait until a network connection has been made and exchange some data, it
may take a while, so it returns a Deferred, to which the gotObject() callback is attached. (See the documentation on
Deferring Execution for a complete explanation of Deferred s). If and when the connection succeeds and a reference
to the remote root object is obtained, this callback is run. The first argument passed to the callback is a remote
reference to the distant root object. (you can give other arguments to the callback too, see the other parameters for
.addCallback() and .addCallbacks()).

The callback does:

object.callRemote("echo", "hello network")

which causes the server’s .remote_echo() method to be invoked. (running .callRemote("boom") would
cause .remote_boom() to be run, etc). Again because of the delay involved, callRemote() returns a Deferred
. Assuming the remote method was run without causing an exception (including an attempt to invoke an unknown
method), the callback attached to that Deferred will be invoked with any objects that were returned by the remote
method call.

In this example, the server’s Echoer object has a method invoked, exactly as if some code on the server side had
done:

echoer_object.remote_echo("hello network")

and from the definition of remote_echo()we see that this just returns the same string it was given: “hello network”
.

From the client’s point of view, the remote call gets another Deferred object instead of that string. callRemote()
always returns a Deferred . This is why PB is described as a system for “translucent” remote method calls instead
of “transparent” ones: you cannot pretend that the remote object is really local. Trying to do so (as some other RPC
mechanisms do, coughCORBAcough) breaks down when faced with the asynchronous nature of the network. Using
Deferreds turns out to be a very clean way to deal with the whole thing.

The remote reference object (the one given to getRootObject() ‘s success callback) is an instance the RemoteRef-
erence class. This means you can use it to invoke methods on the remote object that it refers to. Only instances of
RemoteReference are eligible for .callRemote() . The RemoteReference object is the one that lives on the remote
side (the client, in this case), not the local side (where the actual object is defined).

In our example, the local object is that Echoer() instance, which inherits from pb.Root , which inherits from
pb.Referenceable . It is that Referenceable class that makes the object eligible to be available for remote method
calls 1 . If you have an object that is Referenceable, then any client that manages to get a reference to it can invoke any
remote_* methods they please.

Note: The only thing they can do is invoke those methods. In particular, they cannot access attributes. From a security
point of view, you control what they can do by limiting what the remote_* methods can do.

Also note: the other classes like Referenceable allow access to other methods, in particular perspective_* and
view_* may be accessed. Don’t write local-only methods with these names, because then remote callers will be able
to do more than you intended.

1 There are a few other classes that can bestow this ability, but pb.Referenceable is the easiest to understand; see ‘flavors’ below for details on
the others.

250 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.PBServerFactory.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.PBClientFactory.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.RemoteReference.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.RemoteReference.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.RemoteReference.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.RemoteReference.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.Root.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.Referenceable.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.Referenceable.html

Twisted Documentation, Release 16.0.0

Also also note: the other classes like pb.Copyable do allow access to attributes, but you control which ones they can
see.

You don’t have to be a pb.Root to be remotely callable, but you do have to be pb.Referenceable . (Objects that inherit
from pb.Referenceable but not from pb.Root can be remotely called, but only pb.Root -ish objects can be given to the
PBServerFactory .)

Complete Example

Here is an example client and server which uses pb.Referenceable as a root object and as the result of a remotely
exposed method. In each context, methods can be invoked on the exposed Referenceable instance. In this example,
the initial root object has a method that returns a reference to the second object.

pb1server.py

#!/usr/bin/env python

Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

from twisted.spread import pb

class Two(pb.Referenceable):
def remote_three(self, arg):

print "Two.three was given", arg

class One(pb.Root):
def remote_getTwo(self):

two = Two()
print "returning a Two called", two
return two

from twisted.internet import reactor
reactor.listenTCP(8800, pb.PBServerFactory(One()))
reactor.run()

pb1client.py

#!/usr/bin/env python

Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

from twisted.spread import pb
from twisted.internet import reactor

def main():
factory = pb.PBClientFactory()
reactor.connectTCP("localhost", 8800, factory)
def1 = factory.getRootObject()
def1.addCallbacks(got_obj1, err_obj1)
reactor.run()

def err_obj1(reason):
print "error getting first object", reason
reactor.stop()

2.1. Developer Guides 251

https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.Copyable.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.Root.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.Referenceable.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.Referenceable.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.Root.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.Root.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.PBServerFactory.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.Referenceable.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.Referenceable.html

Twisted Documentation, Release 16.0.0

def got_obj1(obj1):
print "got first object:", obj1
print "asking it to getTwo"
def2 = obj1.callRemote("getTwo")
def2.addCallbacks(got_obj2)

def got_obj2(obj2):
print "got second object:", obj2
print "telling it to do three(12)"
obj2.callRemote("three", 12)

main()

pb.PBClientFactory.getRootObject will handle all the details of waiting for the creation of a connection. It returns a
Deferred , which will have its callback called when the reactor connects to the remote server and pb.PBClientFactory
gets the root, and have its errback called when the object-connection fails for any reason, whether it was host lookup
failure, connection refusal, or some server-side error.

The root object has a method called remote_getTwo , which returns the Two() instance. On the client end, the
callback gets a RemoteReference to that instance. The client can then invoke two’s .remote_three() method.

RemoteReference objects have one method which is their purpose for being: callRemote . This method allows
you to call a remote method on the object being referred to by the Reference. RemoteReference.callRemote , like
pb.PBClientFactory.getRootObject , returns a Deferred . When a response to the method-call being sent arrives, the
Deferred ‘s callback or errback will be made, depending on whether an error occurred in processing the method
call.

You can use this technique to provide access to arbitrary sets of objects. Just remember that any object that might
get passed “over the wire” must inherit from Referenceable (or one of the other flavors). If you try to pass a non-
Referenceable object (say, by returning one from a remote_* method), you’ll get an InsecureJelly exception 2 .

References can come back to you

If your server gives a reference to a client, and then that client gives the reference back to the server, the server will
wind up with the same object it gave out originally. The serialization layer watches for returning reference identifiers
and turns them into actual objects. You need to stay aware of where the object lives: if it is on your side, you do actual
method calls. If it is on the other side, you do .callRemote() 3 .

pb2server.py

#!/usr/bin/env python

Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

from twisted.spread import pb
from twisted.internet import reactor

class Two(pb.Referenceable):
def remote_print(self, arg):

print "two.print was given", arg

2 This can be overridden, by subclassing one of the Serializable flavors and defining custom serialization code for your class. See Passing
Complex Types for details.

3 The binary nature of this local vs. remote scheme works because you cannot give RemoteReferences to a third party. If you could, then your
object A could go to B, B could give it to C, C might give it back to you, and you would be hard pressed to tell if the object lived in C’s memory
space, in B’s, or if it was really your own object, tarnished and sullied after being handed down like a really ugly picture that your great aunt owned
and which nobody wants but which nobody can bear to throw out. Ok, not really like that, but you get the idea.

252 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.PBClientFactory.getRootObject.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.PBClientFactory.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.RemoteReference.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.RemoteReference.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.RemoteReference.callRemote.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.PBClientFactory.getRootObject.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.Referenceable.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.jelly.InsecureJelly.html

Twisted Documentation, Release 16.0.0

class One(pb.Root):
def __init__(self, two):

#pb.Root.__init__(self) # pb.Root doesn't implement __init__
self.two = two

def remote_getTwo(self):
print "One.getTwo(), returning my two called", self.two
return self.two

def remote_checkTwo(self, newtwo):
print "One.checkTwo(): comparing my two", self.two
print "One.checkTwo(): against your two", newtwo
if self.two == newtwo:

print "One.checkTwo(): our twos are the same"

two = Two()
root_obj = One(two)
reactor.listenTCP(8800, pb.PBServerFactory(root_obj))
reactor.run()

pb2client.py

#!/usr/bin/env python

Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

from twisted.spread import pb
from twisted.internet import reactor

def main():
foo = Foo()
factory = pb.PBClientFactory()
reactor.connectTCP("localhost", 8800, factory)
factory.getRootObject().addCallback(foo.step1)
reactor.run()

keeping globals around is starting to get ugly, so we use a simple class
instead. Instead of hooking one function to the next, we hook one method
to the next.

class Foo:
def __init__(self):

self.oneRef = None

def step1(self, obj):
print "got one object:", obj
self.oneRef = obj
print "asking it to getTwo"
self.oneRef.callRemote("getTwo").addCallback(self.step2)

def step2(self, two):
print "got two object:", two
print "giving it back to one"
print "one is", self.oneRef
self.oneRef.callRemote("checkTwo", two)

main()

The server gives a Two() instance to the client, who then returns the reference back to the server. The server compares

2.1. Developer Guides 253

Twisted Documentation, Release 16.0.0

the “two” given with the “two” received and shows that they are the same, and that both are real objects instead of
remote references.

A few other techniques are demonstrated in pb2client.py . One is that the callbacks are added with
.addCallback instead of .addCallbacks . As you can tell from the Deferred documentation, .addCallback
is a simplified form which only adds a success callback. The other is that to keep track of state from one callback to
the next (the remote reference to the main One() object), we create a simple class, store the reference in an instance
thereof, and point the callbacks at a sequence of bound methods. This is a convenient way to encapsulate a state
machine. Each response kicks off the next method, and any data that needs to be carried from one state to the next can
simply be saved as an attribute of the object.

Remember that the client can give you back any remote reference you’ve given them. Don’t base your zillion-dollar
stock-trading clearinghouse server on the idea that you trust the client to give you back the right reference. The
security model inherent in PB means that they can only give you back a reference that you’ve given them for the
current connection (not one you’ve given to someone else instead, nor one you gave them last time before the TCP
session went down, nor one you haven’t yet given to the client), but just like with URLs and HTTP cookies, the
particular reference they give you is entirely under their control.

References to client-side objects

Anything that’s Referenceable can get passed across the wire, in either direction . The “client” can give a reference to
the “server” , and then the server can use .callRemote() to invoke methods on the client end. This fuzzes the distinction
between “client” and “server” : the only real difference is who initiates the original TCP connection; after that it’s all
symmetric.

pb3server.py

#!/usr/bin/env python

Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

from twisted.spread import pb
from twisted.internet import reactor

class One(pb.Root):
def remote_takeTwo(self, two):

print "received a Two called", two
print "telling it to print(12)"
two.callRemote("print", 12)

reactor.listenTCP(8800, pb.PBServerFactory(One()))
reactor.run()

pb3client.py

#!/usr/bin/env python

Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

from twisted.spread import pb
from twisted.internet import reactor

class Two(pb.Referenceable):
def remote_print(self, arg):

print "Two.print() called with", arg

254 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

def main():
two = Two()
factory = pb.PBClientFactory()
reactor.connectTCP("localhost", 8800, factory)
def1 = factory.getRootObject()
def1.addCallback(got_obj, two) # hands our 'two' to the callback
reactor.run()

def got_obj(obj, two):
print "got One:", obj
print "giving it our two"
obj.callRemote("takeTwo", two)

main()

In this example, the client gives a reference to its own object to the server. The server then invokes a remote method
on the client-side object.

Raising Remote Exceptions

Everything so far has covered what happens when things go right. What about when they go wrong? The Python Way
is to raise an exception of some sort. The Twisted Way is the same.

The only special thing you do is to define your Exception subclass by deriving it from pb.Error . When any
remotely-invokable method (like remote_* or perspective_*) raises a pb.Error -derived exception, a seri-
alized form of that Exception object will be sent back over the wire 4 . The other side (which did callRemote) will
have the “errback” callback run with a Failure object that contains a copy of the exception object. This Failure
object can be queried to retrieve the error message and a stack traceback.

Failure is a special class, defined in twisted/python/failure.py , created to make it easier to handle asyn-
chronous exceptions. Just as exception handlers can be nested, errback functions can be chained. If one errback
can’t handle the particular type of failure, it can be “passed along” to a errback handler further down the chain.

For simple purposes, think of the Failure as just a container for remotely-thrown Exception objects. To extract
the string that was put into the exception, use its .getErrorMessage() method. To get the type of the exception
(as a string), look at its .type attribute. The stack traceback is available too. The intent is to let the errback function
get just as much information about the exception as Python’s normal try: clauses do, even though the exception
occurred in somebody else’s memory space at some unknown time in the past.

exc_server.py

#!/usr/bin/env python

Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

from twisted.spread import pb
from twisted.internet import reactor

class MyError(pb.Error):
"""This is an Expected Exception. Something bad happened."""
pass

class MyError2(Exception):
"""This is an Unexpected Exception. Something really bad happened."""

4 To be precise, the Failure will be sent if any exception is raised, not just pb.Error-derived ones. But the server will print ugly error messages if
you raise ones that aren’t derived from pb.Error.

2.1. Developer Guides 255

https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.Error.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.python.failure.Failure.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.python.failure.Failure.html

Twisted Documentation, Release 16.0.0

pass

class One(pb.Root):
def remote_broken(self):

msg = "fall down go boom"
print "raising a MyError exception with data '%s'" % msg
raise MyError(msg)

def remote_broken2(self):
msg = "hadda owie"
print "raising a MyError2 exception with data '%s'" % msg
raise MyError2(msg)

def main():
reactor.listenTCP(8800, pb.PBServerFactory(One()))
reactor.run()

if __name__ == '__main__':
main()

exc_client.py

#!/usr/bin/env python

Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

from twisted.spread import pb
from twisted.internet import reactor

def main():
factory = pb.PBClientFactory()
reactor.connectTCP("localhost", 8800, factory)
d = factory.getRootObject()
d.addCallbacks(got_obj)
reactor.run()

def got_obj(obj):
change "broken" into "broken2" to demonstrate an unhandled exception
d2 = obj.callRemote("broken")
d2.addCallback(working)
d2.addErrback(broken)

def working():
print "erm, it wasn't *supposed* to work.."

def broken(reason):
print "got remote Exception"
reason should be a Failure (or subclass) holding the MyError exception
print " .__class__ =", reason.__class__
print " .getErrorMessage() =", reason.getErrorMessage()
print " .type =", reason.type
reactor.stop()

main()

$./exc_client.py
got remote Exception
.__class__ = twisted.spread.pb.CopiedFailure
.getErrorMessage() = fall down go boom

256 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

.type = __main__.MyError
Main loop terminated.

Oh, and what happens if you raise some other kind of exception? Something that isn’t subclassed from pb.Error
? Well, those are called “unexpected exceptions” , which make Twisted think that something has really gone wrong.
These will raise an exception on the server side. This won’t break the connection (the exception is trapped, just like
most exceptions that occur in response to network traffic), but it will print out an unsightly stack trace on the server’s
stderr with a message that says “Peer Will Receive PB Traceback” , just as if the exception had happened outside
a remotely-invokable method. (This message will go the current log target, if log.startLogging was used to redirect
it). The client will get the same Failure object in either case, but subclassing your exception from pb.Error is
the way to tell Twisted that you expect this sort of exception, and that it is ok to just let the client handle it instead
of also asking the server to complain. Look at exc_client.py and change it to invoke broken2() instead of
broken() to see the change in the server’s behavior.

If you don’t add an errback function to the Deferred , then a remote exception will still send a Failure object
back over, but it will get lodged in the Deferred with nowhere to go. When that Deferred finally goes out of
scope, the side that did callRemote will emit a message about an “Unhandled error in Deferred” , along with an
ugly stack trace. It can’t raise an exception at that point (after all, the callRemote that triggered the problem is long
gone), but it will emit a traceback. So be a good programmer and always add errback handlers, even if they are just
calls to log.err .

Try/Except blocks and Failure.trap

To implement the equivalent of the Python try/except blocks (which can trap particular kinds of exceptions and pass
others “up” to higher-level try/except blocks), you can use the .trap() method in conjunction with multiple
errback handlers on the Deferred . Re-raising an exception in an errback handler serves to pass that new
exception to the next handler in the chain. The trap method is given a list of exceptions to look for, and will re-raise
anything that isn’t on the list. Instead of passing unhandled exceptions “up” to an enclosing try block, this has the
effect of passing the exception “off” to later errback handlers on the same Deferred . The trap calls are used
in chained errbacks to test for each kind of exception in sequence.

trap_server.py

#!/usr/bin/env python

Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

from twisted.internet import reactor
from twisted.spread import pb

class MyException(pb.Error):
pass

class One(pb.Root):
def remote_fooMethod(self, arg):

if arg == "panic!":
raise MyException

return "response"
def remote_shutdown(self):

reactor.stop()

reactor.listenTCP(8800, pb.PBServerFactory(One()))
reactor.run()

trap_client.py

2.1. Developer Guides 257

https://twistedmatrix.com/documents/16.0.0/api/twisted.python.log.startLogging.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.python.log.err.html

Twisted Documentation, Release 16.0.0

#!/usr/bin/env python

Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

from twisted.spread import pb, jelly
from twisted.python import log
from twisted.internet import reactor

class MyException(pb.Error): pass
class MyOtherException(pb.Error): pass

class ScaryObject:
not safe for serialization
pass

def worksLike(obj):
the callback/errback sequence in class One works just like an
asynchronous version of the following:
try:

response = obj.callMethod(name, arg)
except pb.DeadReferenceError:

print " stale reference: the client disconnected or crashed"
except jelly.InsecureJelly:

print " InsecureJelly: you tried to send something unsafe to them"
except (MyException, MyOtherException):

print " remote raised a MyException" # or MyOtherException
except:

print " something else happened"
else:

print " method successful, response:", response

class One:
def worked(self, response):

print " method successful, response:", response
def check_InsecureJelly(self, failure):

failure.trap(jelly.InsecureJelly)
print " InsecureJelly: you tried to send something unsafe to them"
return None

def check_MyException(self, failure):
which = failure.trap(MyException, MyOtherException)
if which == MyException:

print " remote raised a MyException"
else:

print " remote raised a MyOtherException"
return None

def catch_everythingElse(self, failure):
print " something else happened"
log.err(failure)
return None

def doCall(self, explanation, arg):
print explanation
try:

deferred = self.remote.callRemote("fooMethod", arg)
deferred.addCallback(self.worked)
deferred.addErrback(self.check_InsecureJelly)
deferred.addErrback(self.check_MyException)

258 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

deferred.addErrback(self.catch_everythingElse)
except pb.DeadReferenceError:

print " stale reference: the client disconnected or crashed"

def callOne(self):
self.doCall("callOne: call with safe object", "safe string")

def callTwo(self):
self.doCall("callTwo: call with dangerous object", ScaryObject())

def callThree(self):
self.doCall("callThree: call that raises remote exception", "panic!")

def callShutdown(self):
print "telling them to shut down"
self.remote.callRemote("shutdown")

def callFour(self):
self.doCall("callFour: call on stale reference", "dummy")

def got_obj(self, obj):
self.remote = obj
reactor.callLater(1, self.callOne)
reactor.callLater(2, self.callTwo)
reactor.callLater(3, self.callThree)
reactor.callLater(4, self.callShutdown)
reactor.callLater(5, self.callFour)
reactor.callLater(6, reactor.stop)

factory = pb.PBClientFactory()
reactor.connectTCP("localhost", 8800, factory)
deferred = factory.getRootObject()
deferred.addCallback(One().got_obj)
reactor.run()

$./trap_client.py
callOne: call with safe object
method successful, response: response

callTwo: call with dangerous object
InsecureJelly: you tried to send something unsafe to them

callThree: call that raises remote exception
remote raised a MyException

telling them to shut down
callFour: call on stale reference
stale reference: the client disconnected or crashed

In this example, callTwo tries to send an instance of a locally-defined class through callRemote . The default
security model implemented by jelly on the remote end will not allow unknown classes to be unserialized (i.e. taken
off the wire as a stream of bytes and turned back into an object: a living, breathing instance of some class): one reason
is that it does not know which local class ought to be used to create an instance that corresponds to the remote object
5 .

The receiving end of the connection gets to decide what to accept and what to reject. It indicates its disapproval by
raising a jelly.InsecureJelly exception. Because it occurs at the remote end, the exception is returned to the caller
asynchronously, so an errback handler for the associated Deferred is run. That errback receives a Failure
which wraps the InsecureJelly .

5 The naive approach of simply doing import SomeClass to match a remote caller who claims to have an object of type
“SomeClass” could have nasty consequences for some modules that do significant operations in their __init__ methods (think
telnetlib.Telnet(host=’localhost’, port=’chargen’) , or even more powerful classes that you have available in your server
program). Allowing a remote entity to create arbitrary classes in your namespace is nearly equivalent to allowing them to run arbitrary code.

The InsecureJelly exception arises because the class being sent over the wire has not been registered with the serialization layer (known as jelly
). The easiest way to make it possible to copy entire class instances over the wire is to have them inherit from pb.Copyable , and then to use
setUnjellyableForClass(remoteClass, localClass) on the receiving side. See Passing Complex Types for an example.

2.1. Developer Guides 259

https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.jelly.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.jelly.InsecureJelly.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.jelly.InsecureJelly.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.jelly.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.Copyable.html

Twisted Documentation, Release 16.0.0

Remember that trap re-raises exceptions that it wasn’t asked to look for. You can only check for one set of ex-
ceptions per errback handler: all others must be checked in a subsequent handler. check_MyException shows
how multiple kinds of exceptions can be checked in a single errback: give a list of exception types to trap , and
it will return the matching member. In this case, the kinds of exceptions we are checking for (MyException and
MyOtherException) may be raised by the remote end: they inherit from pb.Error .

The handler can return None to terminate processing of the errback chain (to be precise, it switches to the callback
that follows the errback; if there is no callback then processing terminates). It is a good idea to put an errback that
will catch everything (no trap tests, no possible chance of raising more exceptions, always returns None) at the end
of the chain. Just as with regular try: except: handlers, you need to think carefully about ways in which your
errback handlers could themselves raise exceptions. The extra importance in an asynchronous environment is that an
exception that falls off the end of the Deferred will not be signalled until that Deferred goes out of scope, and
at that point may only cause a log message (which could even be thrown away if log.startLogging is not used to point
it at stdout or a log file). In contrast, a synchronous exception that is not handled by any other except: block will
very visibly terminate the program immediately with a noisy stack trace.

callFour shows another kind of exception that can occur while using callRemote : pb.DeadReferenceError .
This one occurs when the remote end has disconnected or crashed, leaving the local side with a stale reference. This
kind of exception happens to be reported right away (XXX: is this guaranteed? probably not), so must be caught in a
traditional synchronous try: except pb.DeadReferenceError block.

Yet another kind that can occur is a pb.PBConnectionLost exception. This occurs (asynchronously) if the connection
was lost while you were waiting for a callRemote call to complete. When the line goes dead, all pending requests
are terminated with this exception. Note that you have no way of knowing whether the request made it to the other end
or not, nor how far along in processing it they had managed before the connection was lost. XXX: explain transaction
semantics, find a decent reference.

2.1.43 Managing Clients of Perspectives

Author Kevin Turner

Overview

In all the IPerspective uses we have shown so far, we ignored the mind argument and created a new Avatar for
every connection. This is usually an easy design choice, and it works well for simple cases.

In more complicated cases, for example an Avatar that represents a player object which is persistent in the game
universe, we will want connections from the same player to use the same Avatar .

Another thing which is necessary in more complicated scenarios is notifying a player asynchronously. While it is
possible, of course, to allow a player to call perspective_remoteListener(referencable) that would
mean both duplication of code and a higher latency in logging in, both bad.

In previous sections all realms looked to be identical. In this one we will show the usefulness of realms in accomplish-
ing those two objectives.

Managing Avatars

The simplest way to manage persistent avatars is to use a straight-forward caching mechanism:

from zope.interface import implements

class SimpleAvatar(pb.Avatar):
greetings = 0
def __init__(self, name):

260 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.Error.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.python.log.startLogging.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.DeadReferenceError.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.PBConnectionLost.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.IPerspective.html

Twisted Documentation, Release 16.0.0

self.name = name
def perspective_greet(self):

self.greetings += 1
return "<%d>hello %s" % (self.greetings, self.name)

class CachingRealm:
implements(portal.IRealm)

def __init__(self):
self.avatars = {}

def requestAvatar(self, avatarId, mind, *interfaces):
if pb.IPerspective not in interfaces: raise NotImplementedError
if avatarId in self.avatars:

p = self.avatars[avatarId]
else:

p = self.avatars[avatarId] = SimpleAvatar(avatarId)
return pb.IPerspective, p, lambda:None

This gives us a perspective which counts the number of greetings it sent its client. Implementing a caching strategy,
as opposed to generating a realm with the correct avatars already in it, is usually easier. This makes adding new
checkers to the portal, or adding new users to a checker database, transparent. Otherwise, careful synchronization is
needed between the checker and avatar is needed (much like the synchronization between UNIX’s /etc/shadow
and /etc/passwd).

Sometimes, however, an avatar will need enough per-connection state that it would be easier to generate a new avatar
and cache something else. Here is an example of that:

from zope.interface import implements

class Greeter:
greetings = 0
def hello(self):

self.greetings += 1
return "<%d>hello" % (self.greetings, self.name)

class SimpleAvatar(pb.Avatar):
def __init__(self, name, greeter):

self.name = name
self.greeter = greeter

def perspective_greet(self):
return self.greeter.hello()+' '+self.name

class CachingRealm:
implements(portal.IRealm)

def __init__(self):
self.greeters = {}

def requestAvatar(self, avatarId, mind, *interfaces):
if pb.IPerspective not in interfaces: raise NotImplementedError
if avatarId in self.greeters:

p = self.greeters[avatarId]
else:

p = self.greeters[avatarId] = Greeter()
return pb.IPerspective, SimpleAvatar(avatarId, p), lambda:None

It might seem tempting to use this pattern to have an avatar which is notified of new connections. However, the
problems here are twofold: it would lead to a thin class which needs to forward all of its methods, and it would be

2.1. Developer Guides 261

Twisted Documentation, Release 16.0.0

impossible to know when disconnections occur. Luckily, there is a better pattern:

from zope.interface import implements

class SimpleAvatar(pb.Avatar):
greetings = 0
connections = 0
def __init__(self, name):

self.name = name
def connect(self):

self.connections += 1
def disconnect(self):

self.connections -= 1
def perspective_greet(self):

self.greetings += 1
return "<%d>hello %s" % (self.greetings, self.name)

class CachingRealm:
implements(portal.IRealm)

def __init__(self):
self.avatars = {}

def requestAvatar(self, avatarId, mind, *interfaces):
if pb.IPerspective not in interfaces: raise NotImplementedError
if avatarId in self.avatars:

p = self.avatars[avatarId]
else:

p = self.avatars[avatarId] = SimpleAvatar(avatarId)
p.connect()
return pb.IPerspective, p, p.disconnect

It is possible to use such a pattern to define an arbitrary limit for the number of concurrent connections:

from zope.interface import implements

class SimpleAvatar(pb.Avatar):
greetings = 0
connections = 0
def __init__(self, name):

self.name = name
def connect(self):

self.connections += 1
def disconnect(self):

self.connections -= 1
def perspective_greet(self):

self.greetings += 1
return "<%d>hello %s" % (self.greetings, self.name)

class CachingRealm:
implements(portal.IRealm)

def __init__(self, max=1):
self.avatars = {}
self.max = max

def requestAvatar(self, avatarId, mind, *interfaces):
if pb.IPerspective not in interfaces: raise NotImplementedError
if avatarId in self.avatars:

262 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

p = self.avatars[avatarId]
else:

p = self.avatars[avatarId] = SimpleAvatar(avatarId)
if p.connections >= self.max:

raise ValueError("too many connections")
p.connect()
return pb.IPerspective, p, p.disconnect

Managing Clients

So far, all our realms have ignored the mind argument. In the case of PB, the mind is an object supplied by the
remote login method – usually, when it passes over the wire, it becomes a pb.RemoteReference . This object
allows sending messages to the client as soon as the connection is established and authenticated.

Here is a simple remote-clock application which shows the usefulness of the mind argument:

from zope.interface import implements

class SimpleAvatar(pb.Avatar):
def __init__(self, client):

self.s = internet.TimerService(1, self.telltime)
self.s.startService()
self.client = client

def telltime(self):
self.client.callRemote("notifyTime", time.time())

def perspective_setperiod(self, period):
self.s.stopService()
self.s = internet.TimerService(period, self.telltime)
self.s.startService()

def logout(self):
self.s.stopService()

class Realm:
implements(portal.IRealm)

def requestAvatar(self, avatarId, mind, *interfaces):
if pb.IPerspective not in interfaces: raise NotImplementedError
p = SimpleAvatar(mind)
return pb.IPerspective, p, p.logout

In more complicated situations, you might want to cache the avatars and give each one a set of “current clients” or
something similar.

2.1.44 PB Copyable: Passing Complex Types

Overview

This chapter focuses on how to use PB to pass complex types (specifically class instances) to and from a remote
process. The first section is on simply copying the contents of an object to a remote process (pb.Copyable). The
second covers how to copy those contents once, then update them later when they change (Cacheable).

2.1. Developer Guides 263

https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.Copyable.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.Cacheable.html

Twisted Documentation, Release 16.0.0

Motivation

From the previous chapter , you’ve seen how to pass basic types to a remote process, by using them in the arguments or
return values of a callRemote function. However, if you’ve experimented with it, you may have discovered problems
when trying to pass anything more complicated than a primitive int/list/dict/string type, or another pb.Referenceable
object. At some point you want to pass entire objects between processes, instead of having to reduce them down to
dictionaries on one end and then re-instantiating them on the other.

Passing Objects

The most obvious and straightforward way to send an object to a remote process is with something like the following
code. It also happens that this code doesn’t work, as will be explained below.

class LilyPond:
def __init__(self, frogs):
self.frogs = frogs

pond = LilyPond(12)
ref.callRemote("sendPond", pond)

If you try to run this, you might hope that a suitable remote end which implements the remote_sendPond method
would see that method get invoked with an instance from the LilyPond class. But instead, you’ll encounter the
dreaded InsecureJelly exception. This is Twisted’s way of telling you that you’ve violated a security restriction, and
that the receiving end refuses to accept your object.

Security Options

What’s the big deal? What’s wrong with just copying a class into another process’ namespace?

Reversing the question might make it easier to see the issue: what is the problem with accepting a stranger’s request
to create an arbitrary object in your local namespace? The real question is how much power you are granting them:
what actions can they convince you to take on the basis of the bytes they are sending you over that remote connection.

Objects generally represent more power than basic types like strings and dictionaries because they also contain (or
reference) code, which can modify other data structures when executed. Once previously-trusted data is subverted, the
rest of the program is compromised.

The built-in Python “batteries included” classes are relatively tame, but you still wouldn’t want to let a foreign pro-
gram use them to create arbitrary objects in your namespace or on your computer. Imagine a protocol that involved
sending a file-like object with a read() method that was supposed to used later to retrieve a document. Then
imagine what if that object were created with os.fdopen("~/.gnupg/secring.gpg") . Or an instance of
telnetlib.Telnet("localhost", "chargen") .

Classes you’ve written for your own program are likely to have far more power. They may run code during __init__
, or even have special meaning simply because of their existence. A program might have User objects to represent
user accounts, and have a rule that says all User objects in the system are referenced when authorizing a login session.
(In this system, User.__init__ would probably add the object to a global list of known users). The simple act of
creating an object would give access to somebody. If you could be tricked into creating a bad object, an unauthorized
user would get access.

So object creation needs to be part of a system’s security design. The dotted line between “trusted inside” and “un-
trusted outside” needs to describe what may be done in response to outside events. One of those events is the receipt
of an object through a PB remote procedure call, which is a request to create an object in your “inside” namespace.
The question is what to do in response to it. For this reason, you must explicitly specify what remote classes will be
accepted, and how their local representatives are to be created.

264 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.RemoteReference.callRemote.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.Referenceable.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.jelly.InsecureJelly.html

Twisted Documentation, Release 16.0.0

What class to use?

Another basic question to answer before we can do anything useful with an incoming serialized object is: what class
should we create? The simplistic answer is to create the “same kind” that was serialized on the sender’s end of the
wire, but this is not as easy or as straightforward as you might think. Remember that the request is coming from a
different program, using a potentially different set of class libraries. In fact, since PB has also been implemented in
Java, Emacs-Lisp, and other languages, there’s no guarantee that the sender is even running Python! All we know on
the receiving end is a list of two things which describe the instance they are trying to send us: the name of the class,
and a representation of the contents of the object.

PB lets you specify the mapping from remote class names to local classes with the setUnjellyableForClass function 1 .

This function takes a remote/sender class reference (either the fully-qualified name as used by the sending end, or a
class object from which the name can be extracted), and a local/recipient class (used to create the local representation
for incoming serialized objects). Whenever the remote end sends an object, the class name that they transmit is looked
up in the table controlled by this function. If a matching class is found, it is used to create the local object. If not, you
get the InsecureJelly exception.

In general you expect both ends to share the same codebase: either you control the program that is running on both
ends of the wire, or both programs share some kind of common language that is implemented in code which exists
on both ends. You wouldn’t expect them to send you an object of the MyFooziWhatZit class unless you also had
a definition for that class. So it is reasonable for the Jelly layer to reject all incoming classes except the ones that
you have explicitly marked with setUnjellyableForClass . But keep in mind that the sender’s idea of a User
object might differ from the recipient’s, either through namespace collisions between unrelated packages, version skew
between nodes that haven’t been updated at the same rate, or a malicious intruder trying to cause your code to fail in
some interesting or potentially vulnerable way.

pb.Copyable

Ok, enough of this theory. How do you send a fully-fledged object from one side to the other?

copy_sender.py

#!/usr/bin/env python

Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

from twisted.spread import pb, jelly
from twisted.python import log
from twisted.internet import reactor

class LilyPond:
def setStuff(self, color, numFrogs):

self.color = color
self.numFrogs = numFrogs

def countFrogs(self):
print "%d frogs" % self.numFrogs

class CopyPond(LilyPond, pb.Copyable):

1 Note that, in this context, “unjelly” is a verb with the opposite meaning of “jelly” . The verb “to jelly” means to serialize an object or data
structure into a sequence of bytes (or other primitive transmittable/storable representation), while “to unjelly” means to unserialize the bytestream
into a live object in the receiver’s memory space. “Unjellyable” is a noun, (not an adjective), referring to the class that serves as a destination or
recipient of the unjellying process. “A is unjellyable into B” means that a serialized representation A (of some remote object) can be unserialized
into a local object of type B. It is these objects “B” that are the “Unjellyable” second argument of the setUnjellyableForClass function. In
particular, “unjellyable” does not mean “cannot be jellied” . Unpersistable means “not persistable” , but “unjelly” , “unserialize” , and “unpickle”
mean to reverse the operations of “jellying” , “serializing” , and “pickling” .

2.1. Developer Guides 265

https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.jelly.setUnjellyableForClass.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.jelly.Unpersistable.html

Twisted Documentation, Release 16.0.0

pass

class Sender:
def __init__(self, pond):

self.pond = pond

def got_obj(self, remote):
self.remote = remote
d = remote.callRemote("takePond", self.pond)
d.addCallback(self.ok).addErrback(self.notOk)

def ok(self, response):
print "pond arrived", response
reactor.stop()

def notOk(self, failure):
print "error during takePond:"
if failure.type == jelly.InsecureJelly:

print " InsecureJelly"
else:

print failure
reactor.stop()
return None

def main():
from copy_sender import CopyPond # so it's not __main__.CopyPond
pond = CopyPond()
pond.setStuff("green", 7)
pond.countFrogs()
class name:
print ".".join([pond.__class__.__module__, pond.__class__.__name__])

sender = Sender(pond)
factory = pb.PBClientFactory()
reactor.connectTCP("localhost", 8800, factory)
deferred = factory.getRootObject()
deferred.addCallback(sender.got_obj)
reactor.run()

if __name__ == '__main__':
main()

copy_receiver.tac

Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

"""
PB copy receiver example.

This is a Twisted Application Configuration (tac) file. Run with e.g.
twistd -ny copy_receiver.tac

See the twistd(1) man page or
http://twistedmatrix.com/documents/current/howto/application for details.
"""

import sys
if __name__ == '__main__':

print __doc__

266 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

sys.exit(1)

from twisted.application import service, internet
from twisted.internet import reactor
from twisted.spread import pb
from copy_sender import LilyPond, CopyPond

from twisted.python import log
#log.startLogging(sys.stdout)

class ReceiverPond(pb.RemoteCopy, LilyPond):
pass

pb.setUnjellyableForClass(CopyPond, ReceiverPond)

class Receiver(pb.Root):
def remote_takePond(self, pond):

print " got pond:", pond
pond.countFrogs()
return "safe and sound" # positive acknowledgement

def remote_shutdown(self):
reactor.stop()

application = service.Application("copy_receiver")
internet.TCPServer(8800, pb.PBServerFactory(Receiver())).setServiceParent(

service.IServiceCollection(application))

The sending side has a class called LilyPond . To make this eligible for transport through callRemote (ei-
ther as an argument, a return value, or something referenced by either of those [like a dictionary value]), it must
inherit from one of the four Serializable classes. In this section, we focus on Copyable . The copyable subclass
of LilyPond is called CopyPond . We create an instance of it and send it through callRemote as an ar-
gument to the receiver’s remote_takePond method. The Jelly layer will serialize (“jelly”) that object as an
instance with a class name of”copy_sender.CopyPond” and some chunk of data that represents the object’s state.
pond.__class__.__module__ and pond.__class__.__name__ are used to derive the class name string.
The object’s getStateToCopy method is used to get the state: this is provided by pb.Copyable , and the default just
retrieves self.__dict__ . This works just like the optional __getstate__ method used by pickle . The pair
of name and state are sent over the wire to the receiver.

The receiving end defines a local class named ReceiverPond to represent incoming LilyPond instances. This
class derives from the sender’s LilyPond class (with a fully-qualified name of copy_sender.LilyPond),
which specifies how we expect it to behave. We trust that this is the same LilyPond class as the sender used. (At the
very least, we hope ours will be able to accept a state created by theirs). It also inherits from pb.RemoteCopy , which
is a requirement for all classes that act in this local-representative role (those which are given to the second argument
of setUnjellyableForClass). RemoteCopy provides the methods that tell the Jelly layer how to create the
local object from the incoming serialized state.

Then setUnjellyableForClass is used to register the two classes. This has two effects: instances of the remote
class (the first argument) will be allowed in through the security layer, and instances of the local class (the second
argument) will be used to contain the state that is transmitted when the sender serializes the remote object.

When the receiver unserializes (“unjellies”) the object, it will create an instance of the local ReceiverPond class,
and hand the transmitted state (usually in the form of a dictionary) to that object’s setCopyableState method. This
acts just like the __setstate__ method that pickle uses when unserializing an object. getStateToCopy
/setCopyableState are distinct from __getstate__ /__setstate__ to allow objects to be persisted (across
time) differently than they are transmitted (across [memory]space).

When this is run, it produces the following output:

2.1. Developer Guides 267

https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.Serializable.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.Copyable.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.flavors.Copyable.getStateToCopy.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.Copyable.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.RemoteCopy.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.flavors.RemoteCopy.setCopyableState.html

Twisted Documentation, Release 16.0.0

[-] twisted.spread.pb.PBServerFactory starting on 8800
[-] Starting factory <twisted.spread.pb.PBServerFactory instance at
0x406159cc>
[Broker,0,127.0.0.1] got pond: <__builtin__.ReceiverPond instance at
0x406ec5ec>
[Broker,0,127.0.0.1] 7 frogs

$./copy_sender.py
7 frogs
copy_sender.CopyPond
pond arrived safe and sound
Main loop terminated.
$

Controlling the Copied State

By overriding getStateToCopy and setCopyableState , you can control how the object is transmitted over
the wire. For example, you might want perform some data-reduction: pre-compute some results instead of sending all
the raw data over the wire. Or you could replace references to a local object on the sender’s side with markers before
sending, then upon receipt replace those markers with references to a receiver-side proxy that could perform the same
operations against a local cache of data.

Another good use for getStateToCopy is to implement “local-only” attributes: data that is only accessible by the
local process, not to any remote users. For example, a .password attribute could be removed from the object state
before sending to a remote system. Combined with the fact that Copyable objects return unchanged from a round
trip, this could be used to build a challenge-response system (in fact PB does this with pb.Referenceable objects
to implement authorization as described here).

Whatever getStateToCopy returns from the sending object will be serialized and sent over the wire;
setCopyableState gets whatever comes over the wire and is responsible for setting up the state of the object
it lives in.

copy2_classes.py

#!/usr/bin/env python

Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

from twisted.spread import pb

class FrogPond:
def __init__(self, numFrogs, numToads):

self.numFrogs = numFrogs
self.numToads = numToads

def count(self):
return self.numFrogs + self.numToads

class SenderPond(FrogPond, pb.Copyable):
def getStateToCopy(self):

d = self.__dict__.copy()
d['frogsAndToads'] = d['numFrogs'] + d['numToads']
del d['numFrogs']
del d['numToads']
return d

class ReceiverPond(pb.RemoteCopy):

268 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

def setCopyableState(self, state):
self.__dict__ = state

def count(self):
return self.frogsAndToads

pb.setUnjellyableForClass(SenderPond, ReceiverPond)

copy2_sender.py

#!/usr/bin/env python

Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

from twisted.spread import pb, jelly
from twisted.python import log
from twisted.internet import reactor
from copy2_classes import SenderPond

class Sender:
def __init__(self, pond):

self.pond = pond

def got_obj(self, obj):
d = obj.callRemote("takePond", self.pond)
d.addCallback(self.ok).addErrback(self.notOk)

def ok(self, response):
print "pond arrived", response
reactor.stop()

def notOk(self, failure):
print "error during takePond:"
if failure.type == jelly.InsecureJelly:

print " InsecureJelly"
else:

print failure
reactor.stop()
return None

def main():
pond = SenderPond(3, 4)
print "count %d" % pond.count()

sender = Sender(pond)
factory = pb.PBClientFactory()
reactor.connectTCP("localhost", 8800, factory)
deferred = factory.getRootObject()
deferred.addCallback(sender.got_obj)
reactor.run()

if __name__ == '__main__':
main()

copy2_receiver.py

#!/usr/bin/env python

Copyright (c) Twisted Matrix Laboratories.

2.1. Developer Guides 269

Twisted Documentation, Release 16.0.0

See LICENSE for details.

from twisted.application import service, internet
from twisted.internet import reactor
from twisted.spread import pb
import copy2_classes # needed to get ReceiverPond registered with Jelly

class Receiver(pb.Root):
def remote_takePond(self, pond):

print " got pond:", pond
print " count %d" % pond.count()
return "safe and sound" # positive acknowledgement

def remote_shutdown(self):
reactor.stop()

application = service.Application("copy_receiver")
internet.TCPServer(8800, pb.PBServerFactory(Receiver())).setServiceParent(

service.IServiceCollection(application))

In this example, the classes are defined in a separate source file, which also sets up the binding between them. The
SenderPond and ReceiverPond are unrelated save for this binding: they happen to implement the same methods,
but use different internal instance variables to accomplish them.

The recipient of the object doesn’t even have to import the class definition into their namespace. It is sufficient that
they import the class definition (and thus execute the setUnjellyableForClass statement). The Jelly layer
remembers the class definition until a matching object is received. The sender of the object needs the definition, of
course, to create the object in the first place.

When run, the copy2 example emits the following:

$ twistd -n -y copy2_receiver.py
[-] twisted.spread.pb.PBServerFactory starting on 8800
[-] Starting factory <twisted.spread.pb.PBServerFactory instance at
0x40604b4c>
[Broker,0,127.0.0.1] got pond: <copy2_classes.ReceiverPond instance at
0x406eb2ac>
[Broker,0,127.0.0.1] count 7

$./copy2_sender.py
count 7
pond arrived safe and sound
Main loop terminated.

Things To Watch Out For

• The first argument to setUnjellyableForClass must refer to the class as known by the sender . The
sender has no way of knowing about how your local import statements are set up, and Python’s flexible
namespace semantics allow you to access the same class through a variety of different names. You must match
whatever the sender does. Having both ends import the class from a separate file, using a canonical module
name (no “sibling imports”), is a good way to get this right, especially when both the sending and the receiving
classes are defined together, with the setUnjellyableForClass immediately following them.

• The class that is sent must inherit from pb.Copyable . The class that is registered to receive it must inherit from
pb.RemoteCopy 2 .

2 pb.RemoteCopy is actually defined in twisted.spread.flavors , but pb.RemoteCopy is the preferred way to access it

270 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.Copyable.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.RemoteCopy.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.RemoteCopy.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.flavors.html

Twisted Documentation, Release 16.0.0

• The same class can be used to send and receive. Just have it inherit from both pb.Copyable and
pb.RemoteCopy . This will also make it possible to send the same class symmetrically back and forth
over the wire. But don’t get confused about when it is coming (and using setCopyableState) versus when
it is going (using getStateToCopy).

• InsecureJelly exceptions are raised by the receiving end. They will be delivered asynchronously to an errback
handler. If you do not add one to the Deferred returned by callRemote , then you will never receive
notification of the problem.

• The class that is derived from pb.RemoteCopy will be created using a constructor __init__ method that
takes no arguments. All setup must be performed in the setCopyableState method. As the docstring on
RemoteCopy says, don’t implement a constructor that requires arguments in a subclass of RemoteCopy .

More Information

• pb.Copyable is mostly implemented in twisted.spread.flavors , and the docstrings there are the
best source of additional information.

• Copyable is also used in twisted.web.distrib to deliver HTTP requests to other programs for rendering, allow-
ing subtrees of URL space to be delegated to multiple programs (on multiple machines).

• twisted.manhole.explorer also uses Copyable to distribute debugging information from the program under test
to the debugging tool.

pb.Cacheable

Sometimes the object you want to send to the remote process is big and slow. “big” means it takes a lot of data (storage,
network bandwidth, processing) to represent its state. “slow” means that state doesn’t change very frequently. It may
be more efficient to send the full state only once, the first time it is needed, then afterwards only send the differences
or changes in state whenever it is modified. The pb.Cacheable class provides a framework to implement this.

pb.Cacheable is derived from pb.Copyable , so it is based upon the idea of an object’s state being captured on the
sending side, and then turned into a new object on the receiving side. This is extended to have an object “publishing”
on the sending side (derived from pb.Cacheable), matched with one”observing” on the receiving side (derived from
pb.RemoteCache).

To effectively use pb.Cacheable , you need to isolate changes to your object into accessor functions (specifically
“setter” functions). Your object needs to get control every single time some attribute is changed 3 .

You derive your sender-side class from pb.Cacheable , and you add two methods: getStateToCacheAndObserve-
For and stoppedObserving . The first is called when a remote caching reference is first created, and retrieves the data
with which the cache is first filled. It also provides an object called the “observer” 4 that points at that receiver-side
cache. Every time the state of the object is changed, you give a message to the observer, informing them of the change.
The other method, stoppedObserving , is called when the remote cache goes away, so that you can stop sending
updates.

On the receiver end, you make your cache class inherit from pb.RemoteCache , and implement the
setCopyableState as you would for a pb.RemoteCopy object. In addition, you must implement methods
to receive the updates sent to the observer by the pb.Cacheable : these methods should have names that start
with observe_ , and match the callRemote invocations from the sender side just as the usual remote_* and
perspective_* methods match normal callRemote calls.

3 Of course you could be clever and add a hook to __setattr__ , along with magical change-announcing subclasses of the usual builtin
types, to detect changes that result from normal “=” set operations. The semi-magical “property attributes” that were introduced in Python 2.2 could
be useful too. The result might be hard to maintain or extend, though.

4 This is actually a RemoteCacheObserver , but it isn’t very useful to subclass or modify, so simply treat it as a little demon that sits in your
pb.Cacheable class and helps you distribute change notifications. The only useful thing to do with it is to run its callRemote method, which
acts just like a normal pb.Referenceable ‘s method of the same name.

2.1. Developer Guides 271

https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.jelly.InsecureJelly.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.RemoteCopy.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.RemoteCopy.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.distrib.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.manhole.explorer.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.Cacheable.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.Cacheable.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.Copyable.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.Cacheable.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.RemoteCache.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.flavors.Cacheable.getStateToCacheAndObserveFor.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.flavors.Cacheable.getStateToCacheAndObserveFor.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.flavors.Cacheable.stoppedObserving.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.RemoteCache.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.RemoteCacheObserver.html

Twisted Documentation, Release 16.0.0

The first time a reference to the pb.Cacheable object is sent to any particular recipient, a sender-side Observer
will be created for it, and the getStateToCacheAndObserveFor method will be called to get the current state
and register the Observer. The state which that returns is sent to the remote end and turned into a local representation
using setCopyableState just like pb.RemoteCopy , described above (in fact it inherits from that class).

After that, your “setter” functions on the sender side should call callRemote on the Observer, which causes
observe_* methods to run on the receiver, which are then supposed to update the receiver-local (cached) state.

When the receiver stops following the cached object and the last reference goes away, the pb.RemoteCache object
can be freed. Just before it dies, it tells the sender side it no longer cares about the original object. When that reference
count goes to zero, the Observer goes away and the pb.Cacheable object can stop announcing every change that
takes place. The stoppedObserving method is used to tell the pb.Cacheable that the Observer has gone away.

With the pb.Cacheable and pb.RemoteCache classes in place, bound together by a call to
pb.setUnjellyableForClass , all that remains is to pass a reference to your pb.Cacheable over the wire
to the remote end. The corresponding pb.RemoteCache object will automatically be created, and the matching
methods will be used to keep the receiver-side slave object in sync with the sender-side master object.

Example

Here is a complete example, in which the MasterDuckPond is controlled by the sending side, and the
SlaveDuckPond is a cache that tracks changes to the master:

cache_classes.py

#!/usr/bin/env python

Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

from twisted.spread import pb

class MasterDuckPond(pb.Cacheable):
def __init__(self, ducks):

self.observers = []
self.ducks = ducks

def count(self):
print "I have [%d] ducks" % len(self.ducks)

def addDuck(self, duck):
self.ducks.append(duck)
for o in self.observers: o.callRemote('addDuck', duck)

def removeDuck(self, duck):
self.ducks.remove(duck)
for o in self.observers: o.callRemote('removeDuck', duck)

def getStateToCacheAndObserveFor(self, perspective, observer):
self.observers.append(observer)
you should ignore pb.Cacheable-specific state, like self.observers
return self.ducks # in this case, just a list of ducks

def stoppedObserving(self, perspective, observer):
self.observers.remove(observer)

class SlaveDuckPond(pb.RemoteCache):
This is a cache of a remote MasterDuckPond
def count(self):

return len(self.cacheducks)
def getDucks(self):

return self.cacheducks
def setCopyableState(self, state):

272 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.flavors.Cacheable.stoppedObserving.html

Twisted Documentation, Release 16.0.0

print " cache - sitting, er, setting ducks"
self.cacheducks = state

def observe_addDuck(self, newDuck):
print " cache - addDuck"
self.cacheducks.append(newDuck)

def observe_removeDuck(self, deadDuck):
print " cache - removeDuck"
self.cacheducks.remove(deadDuck)

pb.setUnjellyableForClass(MasterDuckPond, SlaveDuckPond)

cache_sender.py

#!/usr/bin/env python

Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

from twisted.spread import pb, jelly
from twisted.python import log
from twisted.internet import reactor
from cache_classes import MasterDuckPond

class Sender:
def __init__(self, pond):

self.pond = pond

def phase1(self, remote):
self.remote = remote
d = remote.callRemote("takePond", self.pond)
d.addCallback(self.phase2).addErrback(log.err)

def phase2(self, response):
self.pond.addDuck("ugly duckling")
self.pond.count()
reactor.callLater(1, self.phase3)

def phase3(self):
d = self.remote.callRemote("checkDucks")
d.addCallback(self.phase4).addErrback(log.err)

def phase4(self, dummy):
self.pond.removeDuck("one duck")
self.pond.count()
self.remote.callRemote("checkDucks")
d = self.remote.callRemote("ignorePond")
d.addCallback(self.phase5)

def phase5(self, dummy):
d = self.remote.callRemote("shutdown")
d.addCallback(self.phase6)

def phase6(self, dummy):
reactor.stop()

def main():
master = MasterDuckPond(["one duck", "two duck"])
master.count()

sender = Sender(master)
factory = pb.PBClientFactory()
reactor.connectTCP("localhost", 8800, factory)
deferred = factory.getRootObject()

2.1. Developer Guides 273

Twisted Documentation, Release 16.0.0

deferred.addCallback(sender.phase1)
reactor.run()

if __name__ == '__main__':
main()

cache_receiver.py

#!/usr/bin/env python

Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

from twisted.application import service, internet
from twisted.internet import reactor
from twisted.spread import pb
import cache_classes

class Receiver(pb.Root):
def remote_takePond(self, pond):

self.pond = pond
print "got pond:", pond # a DuckPondCache
self.remote_checkDucks()

def remote_checkDucks(self):
print "[%d] ducks: " % self.pond.count(), self.pond.getDucks()

def remote_ignorePond(self):
stop watching the pond
print "dropping pond"
gc causes __del__ causes 'decache' msg causes stoppedObserving
self.pond = None

def remote_shutdown(self):
reactor.stop()

application = service.Application("copy_receiver")
internet.TCPServer(8800, pb.PBServerFactory(Receiver())).setServiceParent(

service.IServiceCollection(application))

When run, this example emits the following:

$ twistd -n -y cache_receiver.py
[-] twisted.spread.pb.PBServerFactory starting on 8800
[-] Starting factory <twisted.spread.pb.PBServerFactory instance at
0x40615acc>
[Broker,0,127.0.0.1] cache - sitting, er, setting ducks
[Broker,0,127.0.0.1] got pond: <cache_classes.SlaveDuckPond instance at
0x406eb5ec>
[Broker,0,127.0.0.1] [2] ducks: ['one duck', 'two duck']
[Broker,0,127.0.0.1] cache - addDuck
[Broker,0,127.0.0.1] [3] ducks: ['one duck', 'two duck', 'ugly duckling']
[Broker,0,127.0.0.1] cache - removeDuck
[Broker,0,127.0.0.1] [2] ducks: ['two duck', 'ugly duckling']
[Broker,0,127.0.0.1] dropping pond

$./cache_sender.py
I have [2] ducks
I have [3] ducks
I have [2] ducks
Main loop terminated.

274 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

Points to notice:

• There is one Observer for each remote program that holds an active reference. Multiple references inside
the same program don’t matter: the serialization layer notices the duplicates and does the appropriate reference
counting 5 .

• Multiple Observers need to be kept in a list, and all of them need to be updated when something changes. By
sending the initial state at the same time as you add the observer to the list, in a single atomic action that cannot
be interrupted by a state change, you insure that you can send the same status update to all the observers.

• The observer.callRemote calls can still fail. If the remote side has disconnected very recently and
stoppedObserving has not yet been called, you may get a DeadReferenceError . It is a good idea to
add an errback to those callRemote s to throw away such an error. This is a useful idiom:

observer.callRemote('foo', arg).addErrback(lambda f: None)

• getStateToCacheAndObserverFor must return some object that represents the current state of the ob-
ject. This may simply be the object’s __dict__ attribute. It is a good idea to remove the pb.Cacheable
-specific members of it before sending it to the remote end. The list of Observers, in particular, should be left
out, to avoid dizzying recursive Cacheable references. The mind boggles as to the potential consequences of
leaving in such an item.

• A perspective argument is available to getStateToCacheAndObserveFor , as well as
stoppedObserving . I think the purpose of this is to allow viewer-specific changes to the way the cache is
updated. If all remote viewers are supposed to see the same data, it can be ignored.

More Information

• The best source for information comes from the docstrings in twisted.spread.flavors , where pb.Cacheable
is implemented.

• twisted.manhole.explorer uses Cacheable , and does some fairly interesting things with it.

• The spread.publish module also uses Cacheable , and might be a source of further information.

2.1.45 Authentication with Perspective Broker

Overview

The examples shown in Using Perspective Broker demonstrate how to do basic remote method calls, but provided no
facilities for authentication. In this context, authentication is about who gets which remote references, and how to
restrict access to the “right” set of people or programs.

As soon as you have a program which offers services to multiple users, where those users should not be allowed to
interfere with each other, you need to think about authentication. Many services use the idea of an “account” , and rely
upon fact that each user has access to only one account. Twisted uses a system called cred to handle authentication
issues, and Perspective Broker has code to make it easy to implement the most common use cases.

Compartmentalizing Services

Imagine how you would write a chat server using PB. The first step might be a ChatServer object which had a
bunch of pb.RemoteReference s that point at user clients. Pretend that those clients offered a remote_print

5 This applies to multiple references through the same Broker . If you’ve managed to make multiple TCP connections to the same program, you
deserve whatever you get.

2.1. Developer Guides 275

https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.flavors.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.manhole.explorer.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.publish.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.Broker.html

Twisted Documentation, Release 16.0.0

method which lets the server print a message on the user’s console. In that case, the server might look something like
this:

class ChatServer(pb.Referenceable):

def __init__(self):
self.groups = {} # indexed by name
self.users = {} # indexed by name

def remote_joinGroup(self, username, groupname):
if not self.groups.has_key(groupname):

self.groups[groupname] = []
self.groups[groupname].append(self.users[username])

def remote_sendMessage(self, from_username, groupname, message):
group = self.groups[groupname]
if group:

send the message to all members of the group
for user in group:

user.callRemote("print",
"<%s> says: %s" % (from_username,

message))

For now, assume that all clients have somehow acquired a pb.RemoteReference to this ChatServer object,
perhaps using pb.Root and getRootObject as described in the previous chapter . In this scheme, when a user
sends a message to the group, their client runs something like the following:

remotegroup.callRemote("sendMessage", "alice", "Hi, my name is alice.")

Incorrect Arguments

You’ve probably seen the first problem: users can trivially spoof each other. We depend upon the user to pass a correct
value in their “username” argument, and have no way to tell if they’re lying or not. There is nothing to prevent Alice
from modifying her client to do:

remotegroup.callRemote("sendMessage", "bob", "i like pork")

much to the horror of Bob’s vegetarian friends. 1

(In general, learn to get suspicious if you see any argument of a remotely-invokable method described as “must be X”
)

The best way to fix this is to keep track of the user’s name locally, rather than asking them to send it to the server with
each message. The best place to keep state is in an object, so this suggests we need a per-user object. Rather than
choosing an obvious name 2 , let’s call this the User class.

class User(pb.Referenceable):
def __init__(self, username, server, clientref):

self.name = username
self.server = server
self.remote = clientref

def remote_joinGroup(self, groupname):
self.server.joinGroup(groupname, self)

def remote_sendMessage(self, groupname, message):
self.server.sendMessage(self.name, groupname, message)

1 Apparently Alice is one of those weirdos who has nothing better to do than to try and impersonate Bob. She will lie to her chat client, send
incorrect objects to remote methods, even rewrite her local client code entirely to accomplish this juvenile prank. Given this adversarial relationship,
one must wonder why she and Bob seem to spend so much time together: their adventures are clearly documented by the cryptographic literature.

2 The obvious name is clearly ServerSidePerUserObjectWhichNobodyElseHasAccessTo , but because Python makes everything
else so easy to read, it only seems fair to make your audience work for something .

276 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

def send(self, message):
self.remote.callRemote("print", message)

class ChatServer:
def __init__(self):

self.groups = {} # indexed by name
def joinGroup(self, groupname, user):

if not self.groups.has_key(groupname):
self.groups[groupname] = []

self.groups[groupname].append(user)
def sendMessage(self, from_username, groupname, message):

group = self.groups[groupname]
if group:

send the message to all members of the group
for user in group:

user.send("<%s> says: %s" % (from_username, message))

Again, assume that each remote client gets access to a single User object, which is created with the proper username.

Note how the ChatServer object has no remote access: it isn’t even pb.Referenceable anymore. This means
that all access to it must be mediated through other objects, with code that is under your control.

As long as Alice only has access to her own User object, she can no longer spoof Bob. The only way for her to invoke
ChatServer.sendMessage is to call her User object’s remote_sendMessagemethod, and that method uses
its own state to provide the from_username argument. It doesn’t give her any way to change that state.

This restriction is important. The User object is able to maintain its own integrity because there is a wall between
the object and the client: the client cannot inspect or modify internal state, like the .name attribute. The only way
through this wall is via remote method invocations, and the only control Alice has over those invocations is when they
get invoked and what arguments they are given.

Note: No object can maintain its integrity against local threats: by design, Python offers no mechanism for class
instances to hide their attributes, and once an intruder has a copy of self.__dict__ , they can do everything the
original object was able to do.

Unforgeable References

Now suppose you wanted to implement group parameters, for example a mode in which nobody was allowed to talk
about mattresses because some users were sensitive and calming them down after someone said “mattress” is a hassle
that’s best avoided altogether. Again, per-group state implies a per-group object. We’ll go out on a limb and call this
the Group object:

class User(pb.Referenceable):
def __init__(self, username, server, clientref):

self.name = username
self.server = server
self.remote = clientref

def remote_joinGroup(self, groupname, allowMattress=True):
return self.server.joinGroup(groupname, self, allowMattress)

def send(self, message):
self.remote.callRemote("print", message)

class Group(pb.Referenceable):
def __init__(self, groupname, allowMattress):

self.name = groupname

2.1. Developer Guides 277

Twisted Documentation, Release 16.0.0

self.allowMattress = allowMattress
self.users = []

def remote_send(self, from_user, message):
if not self.allowMattress and "mattress" in message:

raise ValueError, "Don't say that word"
for user in self.users:

user.send("<%s> says: %s" % (from_user.name, message))
def addUser(self, user):

self.users.append(user)

class ChatServer:
def __init__(self):

self.groups = {} # indexed by name
def joinGroup(self, groupname, user, allowMattress):

if groupname not in self.groups:
self.groups[groupname] = Group(groupname, allowMattress)

self.groups[groupname].addUser(user)
return self.groups[groupname]

This example takes advantage of the fact that pb.Referenceable objects sent over a wire can be returned to you,
and they will be turned into references to the same object that you originally sent. The client cannot modify the object
in any way: all they can do is point at it and invoke its remote_* methods. Thus, you can be sure that the .name
attribute remains the same as you left it. In this case, the client code would look something like this:

class ClientThing(pb.Referenceable):
def remote_print(self, message):

print message
def join(self):

d = self.remoteUser.callRemote("joinGroup", "#twisted",
allowMattress=False)

d.addCallback(self.gotGroup)
def gotGroup(self, group):

group.callRemote("send", self.remoteUser, "hi everybody")

The User object is sent from the server side, and is turned into a pb.RemoteReference when it arrives at the
client. The client sends it back to Group.remote_send , and PB turns it back into a reference to the original User
when it gets there. Group.remote_send can then use its .name attribute as the sender of the message.

Note: Third party references (there aren’t any)

This technique also relies upon the fact that the pb.Referenceable reference can only come from someone
who holds a corresponding pb.RemoteReference . The design of the serialization mechanism (implemented
in twisted.spread.jelly : pb, jelly, spread.. get it? Look for “banana” , too. What other networking framework can
claim API names based on sandwich ingredients?) makes it impossible for a client to obtain a reference that they
weren’t explicitly given. References passed over the wire are given id numbers and recorded in a per-connection
dictionary. If you didn’t give them the reference, the id number won’t be in the dict, and no amount of guessing by a
malicious client will give them anything else. The dict goes away when the connection is dropped, further limiting the
scope of those references.

Furthermore, it is not possible for Bob to send his User reference to Alice (perhaps over some other PB chan-
nel just between the two of them). Outside the context of Bob’s connection to the server, that reference is just a
meaningless number. To prevent confusion, PB will tell you if you try to give it away: when you try to hand a
pb.RemoteReference to a third party, you’ll get an exception (implemented with an assert in pb.py:364 Re-
moteReference.jellyFor).

This helps the security model somewhat: only the client you gave the reference to can cause any damage with it. Of
course, the client might be a brainless zombie, simply doing anything some third party wants. When it’s not proxying

278 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.jelly.html

Twisted Documentation, Release 16.0.0

callRemote invocations, it’s probably terrorizing the living and searching out human brains for sustenance. In
short, if you don’t trust them, don’t give them that reference.

And remember that everything you’ve ever given them over that connection can come back to you. If expect the client
to invoke your method with some object A that you sent to them earlier, and instead they send you object B (that
you also sent to them earlier), and you don’t check it somehow, then you’ve just opened up a security hole (we’ll
see an example of this shortly). It may be better to keep such objects in a dictionary on the server side, and have
the client send you an index string instead. Doing it that way makes it obvious that they can send you anything they
want, and improves the chances that you’ll remember to implement the right checks. (This is exactly what PB is doing
underneath, with a per-connection dictionary of Referenceable objects, indexed by a number).

And, of course, you have to make sure you don’t accidentally hand out a reference to the wrong object.

But again, note the vulnerability. If Alice holds a RemoteReference to any object on the server side that has a
.name attribute, she can use that name as a spoofed”from” parameter. As a simple example, what if her client code
looked like:

class ClientThing(pb.Referenceable):
def join(self):

d = self.remoteUser.callRemote("joinGroup", "#twisted")
d.addCallback(self.gotGroup)

def gotGroup(self, group):
group.callRemote("send", from_user=group, "hi everybody")

This would let her send a message that appeared to come from “#twisted” rather than “Alice” . If she joined a group
that happened to be named “bob” (perhaps it is the “How To Be Bob” channel, populated by Alice and countless
others, a place where they can share stories about their best impersonating-Bob moments), then she would be able to
emit a message that looked like “<bob> says: hi there” , and she has accomplished her lifelong goal.

Argument Typechecking

There are two techniques to close this hole. The first is to have your remotely-invokable methods do type-checking
on their arguments: if Group.remote_send asserted isinstance(from_user, User) then Alice couldn’t
use non-User objects to do her spoofing, and hopefully the rest of the system is designed well enough to prevent her
from obtaining access to somebody else’s User object.

Objects as Capabilities

The second technique is to avoid having the client send you the objects altogether. If they don’t send you any-
thing, there is nothing to verify. In this case, you would have to have a per-user-per-group object, in which the
remote_send method would only take a single message argument. The UserGroup object is created with
references to the only User and Group objects that it will ever use, so no lookups are needed:

class UserGroup(pb.Referenceable):
def __init__(self, user, group):

self.user = user
self.group = group

def remote_send(self, message):
self.group.send(self.user.name, message)

class Group:
def __init__(self, groupname, allowMattress):

self.name = groupname
self.allowMattress = allowMattress
self.users = []

2.1. Developer Guides 279

Twisted Documentation, Release 16.0.0

def send(self, from_user, message):
if not self.allowMattress and "mattress" in message:

raise ValueError, "Don't say that word"
for user in self.users:

user.send("<%s> says: %s" % (from_user.name, message))
def addUser(self, user):

self.users.append(user)

The only message-sending method Alice has left is UserGroup.remote_send , and it only accepts a message:
there are no remaining ways to influence the “from” name.

In this model, each remotely-accessible object represents a very small set of capabilities. Security is achieved by only
granting a minimal set of abilities to each remote user.

PB provides a shortcut which makes this technique easier to use. The Viewable class will be discussed below .

Avatars and Perspectives

In Twisted’s cred system, an “Avatar” is an object that lives on the “server” side (defined here as the side farthest from
the human who is trying to get something done) which lets the remote user get something done. The avatar isn’t really
a particular class, it’s more like a description of a role that some object plays, as in “the Foo object here is acting as
the user’s avatar for this particular service” . Generally, the remote user has some way of getting their avatar to run
some code. The avatar object may enforce some security checks, and provide additional data, then call other methods
which get things done.

The two pieces in the cred puzzle (for any protocol, not just PB) are: “what serves as the Avatar?” , and “how does
the user get access to it?” .

For PB, the first question is easy. The Avatar is a remotely-accessible object which can run code: this is a perfect
description of pb.Referenceable and its subclasses. We shall defer the second question until the next section.

In the example above, you can think of the ChatServer and Group objects as a service. The User object is
the user’s server-side representative: everything the user is capable of doing is done by running one of its methods.
Anything that the server wants to do to the user (change their group membership, change their name, delete their pet
cat, whatever) is done by manipulating the User object.

There are multiple User objects living in peace and harmony around the ChatServer. Each has a different point of view
on the services provided by the ChatServer and the Groups: each may belong to different groups, some might have
more permissions than others (like the ability to create groups). These different points of view are called “Perspectives”
. This is the origin of the term “Perspective” in “Perspective Broker” : PB provides and controls (i.e. “brokers”) access
to Perspectives.

Once upon a time, these local-representative objects were actually called pb.Perspective . But this has changed
with the advent of the rewritten cred system, and now the more generic term for a local representative object is an
Avatar. But you will still see reference to “Perspective” in the code, the docs, and the module names 3 . Just remember
that perspectives and avatars are basically the same thing.

Despite all we’ve been telling you about how Avatars are more of a concept than an actual class, the base class from
which you can create your server-side avatar-ish objects is, in fact, named pb.Avatar 4 . These objects behave very
much like pb.Referenceable . The only difference is that instead of offering “remote_FOO” methods, they offer
“perspective_FOO” methods.

3 We could just go ahead and rename Perspective Broker to be Avatar Broker, but 1) that would cause massive compatibility problems, and
2) “AB” doesn’t fit into the whole sandwich-themed naming scheme nearly as well as “PB” does. If we changed it to AB, we’d probably have
to change Banana to be CD (CoderDecoder), and Jelly to be EF (EncapsulatorFragmentor). twisted.spread would then have to be renamed
twisted.alphabetsoup, and then the whole food-pun thing would start all over again.

4 The avatar-ish class is named pb.Avatar because pb.Perspective was already taken, by the (now obsolete) oldcred perspective-
ish class. It is a pity, but it simply wasn’t possible both replace pb.Perspective in-place and maintain a reasonable level of backwards-
compatibility.

280 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

The other way in which pb.Avatar differs from pb.Referenceable is that the avatar objects are designed
to be the first thing retrieved by a cred-using remote client. Just as PBClientFactory.getRootObject
gives the client access to a pb.Root object (which can then provide access to all kinds of other objects),
PBClientFactory.login gives client access to a pb.Avatar object (which can return other references).

So, the first half of using cred in your PB application is to create an Avatar object which implements perspective_
methods and is careful to do useful things for the remote user while remaining vigilant against being tricked with
unexpected argument values. It must also be careful to never give access to objects that the user should not have
access to, whether by returning them directly, returning objects which contain them, or returning objects which can be
asked (remotely) to provide them.

The second half is how the user gets a pb.RemoteReference to your Avatar. As explained elsewhere , Avatars
are obtained from a Realm. The Realm doesn’t deal with authentication at all (usernames, passwords, public keys,
challenge-response systems, retinal scanners, real-time DNA sequencers, etc). It simply takes an “avatarID” (which is
effectively a username) and returns an Avatar object. The Portal and its Checkers deal with authenticating the user: by
the time they are done, the remote user has proved their right to access the avatarID that is given to the Realm, so the
Realm can return a remotely-controllable object that has whatever powers you wish to grant to this particular user.

For PB, the realm is expected to return a pb.Avatar (or anything which implements pb.IPerspective , really,
but there’s no reason to not return a pb.Avatar subclass). This object will be given to the client just like a pb.Root
would be without cred, and the user can get access to other objects through it (if you let them).

The basic idea is that there is a separate IPerspective-implementing object (i.e. the Avatar subclass) (i.e. the “per-
spective”) for each user, and only the authorized user gets a remote reference to that object. You can store whatever
permissions or capabilities the user possesses in that object, and then use them when the user invokes a remote method.
You give the user access to the perspective object instead of the objects that do the real work.

Perspective Examples

Here is a brief example of using a pb.Avatar. Most of the support code is magic for now: we’ll explain it later.

One Client

pb5server.py

#!/usr/bin/env python

Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

from zope.interface import implements

from twisted.spread import pb
from twisted.cred import checkers, portal
from twisted.internet import reactor

class MyPerspective(pb.Avatar):
def __init__(self, name):

self.name = name
def perspective_foo(self, arg):

print "I am", self.name, "perspective_foo(",arg,") called on", self

class MyRealm:
implements(portal.IRealm)
def requestAvatar(self, avatarId, mind, *interfaces):

if pb.IPerspective not in interfaces:

2.1. Developer Guides 281

Twisted Documentation, Release 16.0.0

raise NotImplementedError
return pb.IPerspective, MyPerspective(avatarId), lambda:None

p = portal.Portal(MyRealm())
p.registerChecker(

checkers.InMemoryUsernamePasswordDatabaseDontUse(user1="pass1"))
reactor.listenTCP(8800, pb.PBServerFactory(p))
reactor.run()

pb5client.py

#!/usr/bin/env python

Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

from twisted.spread import pb
from twisted.internet import reactor
from twisted.cred import credentials

def main():
factory = pb.PBClientFactory()
reactor.connectTCP("localhost", 8800, factory)
def1 = factory.login(credentials.UsernamePassword("user1", "pass1"))
def1.addCallback(connected)
reactor.run()

def connected(perspective):
print "got perspective ref:", perspective
print "asking it to foo(12)"
perspective.callRemote("foo", 12)

main()

Ok, so that wasn’t really very exciting. It doesn’t accomplish much more than the first PB example, and used a lot
more code to do it. Let’s try it again with two users this time.

Note: When the client runs login to request the Perspective, they can provide it with an optional client argument
(which must be a pb.Referenceable object). If they do, then a reference to that object will be handed to the
realm’s requestAvatar in the mind argument.

The server-side Perspective can use it to invoke remote methods on something in the client, so that the client doesn’t
always have to drive the interaction. In a chat server, the client object would be the one to which”display text” messages
were sent. In a board game server, this would provide a way to tell the clients that someone has made a move, so they
can update their game boards.

Two Clients

pb6server.py

#!/usr/bin/env python

Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

282 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

from zope.interface import implements

from twisted.spread import pb
from twisted.cred import checkers, portal
from twisted.internet import reactor

class MyPerspective(pb.Avatar):
def __init__(self, name):

self.name = name
def perspective_foo(self, arg):

print "I am", self.name, "perspective_foo(",arg,") called on", self

class MyRealm:
implements(portal.IRealm)
def requestAvatar(self, avatarId, mind, *interfaces):

if pb.IPerspective not in interfaces:
raise NotImplementedError

return pb.IPerspective, MyPerspective(avatarId), lambda:None

p = portal.Portal(MyRealm())
c = checkers.InMemoryUsernamePasswordDatabaseDontUse(user1="pass1",

user2="pass2")
p.registerChecker(c)
reactor.listenTCP(8800, pb.PBServerFactory(p))
reactor.run()

pb6client1.py

#!/usr/bin/env python

Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

from twisted.spread import pb
from twisted.internet import reactor
from twisted.cred import credentials

def main():
factory = pb.PBClientFactory()
reactor.connectTCP("localhost", 8800, factory)
def1 = factory.login(credentials.UsernamePassword("user1", "pass1"))
def1.addCallback(connected)
reactor.run()

def connected(perspective):
print "got perspective1 ref:", perspective
print "asking it to foo(13)"
perspective.callRemote("foo", 13)

main()

pb6client2.py

#!/usr/bin/env python

Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

from twisted.spread import pb

2.1. Developer Guides 283

Twisted Documentation, Release 16.0.0

from twisted.internet import reactor

from twisted.spread import pb
from twisted.internet import reactor
from twisted.cred import credentials

def main():
factory = pb.PBClientFactory()
reactor.connectTCP("localhost", 8800, factory)
def1 = factory.login(credentials.UsernamePassword("user2", "pass2"))
def1.addCallback(connected)
reactor.run()

def connected(perspective):
print "got perspective2 ref:", perspective
print "asking it to foo(14)"
perspective.callRemote("foo", 14)

main()

While pb6server.py is running, try starting pb6client1, then pb6client2. Compare the argument passed by the
.callRemote() in each client. You can see how each client gets connected to a different Perspective.

How that example worked

Let’s walk through the previous example and see what was going on.

First, we created a subclass called MyPerspective which is our server-side Avatar. It implements a
perspective_foo method that is exposed to the remote client.

Second, we created a realm (an object which implements IRealm , and therefore implements requestAvatar).
This realm manufactures MyPerspective objects. It makes as many as we want, and names each one with the
avatarID (a username) that comes out of the checkers. This MyRealm object returns two other objects as well, which
we will describe later.

Third, we created a portal to hold this realm. The portal’s job is to dispatch incoming clients to the credential checkers,
and then to request Avatars for any which survive the authentication process.

Fourth, we made a simple checker (an object which implements IChecker) to hold valid user/password pairs. The
checker gets registered with the portal, so it knows who to ask when new clients connect. We use a checker named
InMemoryUsernamePasswordDatabaseDontUse , which suggests that 1: all the username/password pairs
are kept in memory instead of being saved to a database or something, and 2: you shouldn’t use it. The admonition
against using it is because there are better schemes: keeping everything in memory will not work when you have
thousands or millions of users to keep track of, the passwords will be stored in the .tap file when the application shuts
down (possibly a security risk), and finally it is a nuisance to add or remove users after the checker is constructed.

Fifth, we create a pb.PBServerFactory to listen on a TCP port. This factory knows how to connect the remote
client to the Portal, so incoming connections will be handed to the authentication process. Other protocols (non-PB)
would do something similar: the factory that creates Protocol objects will give those objects access to the Portal so
authentication can take place.

On the client side, a pb.PBClientFactory is created (as before) and attached to a TCP connection. When the
connection completes, the factory will be asked to produce a Protocol, and it will create a PB object. Unlike the previ-
ous chapter, where we used .getRootObject , here we use factory.login to initiate the cred authentication
process. We provide a credentials object, which is the client-side agent for doing our half of the authentication
process. This process may involve several messages: challenges, responses, encrypted passwords, secure hashes, etc.

284 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

We give our credentials object everything it will need to respond correctly (in this case, a username and password, but
you could write a credential that used public-key encryption or even fancier techniques).

login returns a Deferred which, when it fires, will return a pb.RemoteReference to the remote avatar. We can
then do callRemote to invoke a perspective_foo method on that Avatar.

Anonymous Clients

pbAnonServer.py

#!/usr/bin/env python

Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

"""
Implement the realm for and run on port 8800 a PB service which allows both
anonymous and username/password based access.

Successful username/password-based login requests given an instance of
MyPerspective with a name which matches the username with which they
authenticated. Success anonymous login requests are given an instance of
MyPerspective with the name "Anonymous".
"""

from sys import stdout

from zope.interface import implements

from twisted.python.log import startLogging
from twisted.cred.checkers import ANONYMOUS, AllowAnonymousAccess
from twisted.cred.checkers import InMemoryUsernamePasswordDatabaseDontUse
from twisted.cred.portal import IRealm, Portal
from twisted.internet import reactor
from twisted.spread.pb import Avatar, IPerspective, PBServerFactory

class MyPerspective(Avatar):
"""
Trivial avatar exposing a single remote method for demonstrative
purposes. All successful login attempts in this example will result in
an avatar which is an instance of this class.

@type name: C{str}
@ivar name: The username which was used during login or C{"Anonymous"}
if the login was anonymous (a real service might want to avoid the
collision this introduces between anonoymous users and authenticated
users named "Anonymous").
"""
def __init__(self, name):

self.name = name

def perspective_foo(self, arg):
"""
Print a simple message which gives the argument this method was
called with and this avatar's name.
"""

2.1. Developer Guides 285

Twisted Documentation, Release 16.0.0

print "I am %s. perspective_foo(%s) called on %s." % (
self.name, arg, self)

class MyRealm(object):
"""
Trivial realm which supports anonymous and named users by creating
avatars which are instances of MyPerspective for either.
"""
implements(IRealm)

def requestAvatar(self, avatarId, mind, *interfaces):
if IPerspective not in interfaces:

raise NotImplementedError("MyRealm only handles IPerspective")
if avatarId is ANONYMOUS:

avatarId = "Anonymous"
return IPerspective, MyPerspective(avatarId), lambda: None

def main():
"""
Create a PB server using MyRealm and run it on port 8800.
"""
startLogging(stdout)

p = Portal(MyRealm())

Here the username/password checker is registered.
c1 = InMemoryUsernamePasswordDatabaseDontUse(user1="pass1", user2="pass2")
p.registerChecker(c1)

Here the anonymous checker is registered.
c2 = AllowAnonymousAccess()
p.registerChecker(c2)

reactor.listenTCP(8800, PBServerFactory(p))
reactor.run()

if __name__ == '__main__':
main()

pbAnonClient.py

#!/usr/bin/env python

Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

"""
Client which will talk to the server run by pbAnonServer.py, logging in
either anonymously or with username/password credentials.
"""

from sys import stdout

286 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

from twisted.python.log import err, startLogging
from twisted.cred.credentials import Anonymous, UsernamePassword
from twisted.internet import reactor
from twisted.internet.defer import gatherResults
from twisted.spread.pb import PBClientFactory

def error(why, msg):
"""
Catch-all errback which simply logs the failure. This isn't expected to
be invoked in the normal case for this example.
"""
err(why, msg)

def connected(perspective):
"""
Login callback which invokes the remote "foo" method on the perspective
which the server returned.
"""
print "got perspective1 ref:", perspective
print "asking it to foo(13)"
return perspective.callRemote("foo", 13)

def finished(ignored):
"""
Callback invoked when both logins and method calls have finished to shut
down the reactor so the example exits.
"""
reactor.stop()

def main():
"""
Connect to a PB server running on port 8800 on localhost and log in to
it, both anonymously and using a username/password it will recognize.
"""
startLogging(stdout)
factory = PBClientFactory()
reactor.connectTCP("localhost", 8800, factory)

anonymousLogin = factory.login(Anonymous())
anonymousLogin.addCallback(connected)
anonymousLogin.addErrback(error, "Anonymous login failed")

usernameLogin = factory.login(UsernamePassword("user1", "pass1"))
usernameLogin.addCallback(connected)
usernameLogin.addErrback(error, "Username/password login failed")

bothDeferreds = gatherResults([anonymousLogin, usernameLogin])
bothDeferreds.addCallback(finished)

reactor.run()

if __name__ == '__main__':
main()

2.1. Developer Guides 287

Twisted Documentation, Release 16.0.0

pbAnonServer.py implements a server based on pb6server.py, extending it to permit anonymous logins in addition
to authenticated logins. An AllowAnonymousAccess checker and an InMemoryUsernamePasswordDatabaseDontUse
checker are registered and the client’s choice of credentials object determines which is used to authenticate the login.
In either case, the realm will be called on to create an avatar for the login. AllowAnonymousAccess always
produces an avatarId of twisted.cred.checkers.ANONYMOUS .

On the client side, the only change is the use of an instance of Anonymous when calling PBClientFactory.login .

Using Avatars

Avatar Interfaces

The first element of the 3-tuple returned by requestAvatar indicates which Interface this Avatar implements. For
PB avatars, it will always be pb.IPerspective , because that’s the only interface these avatars implement.

This element is present because requestAvatar is actually presented with a list of possible Interfaces. The question
being posed to the Realm is: “do you have an avatar for (avatarID) that can implement one of the following set of
Interfaces?” . Some portals and checkers might give a list of Interfaces and the Realm could pick; the PB code only
knows how to do one, so we cannot take advantage of this feature.

Logging Out

The third element of the 3-tuple is a zero-argument callable, which will be invoked by the protocol when the connection
has been lost. We can use this to notify the Avatar when the client has lost its connection. This will be described in
more detail below.

Making Avatars

In the example above, we create Avatars upon request, during requestAvatar . Depending upon the service, these
Avatars might already exist before the connection is received, and might outlive the connection. The Avatars might
also accept multiple connections.

Another possibility is that the Avatars might exist ahead of time, but in a different form (frozen in a pickle and/or saved
in a database). In this case, requestAvatar may need to perform a database lookup and then do something with
the result before it can provide an avatar. In this case, it would probably return a Deferred so it could provide the real
Avatar later, once the lookup had completed.

Here are some possible implementations of MyRealm.requestAvatar :

pre-existing, static avatars
def requestAvatar(self, avatarID, mind, *interfaces):

assert pb.IPerspective in interfaces
avatar = self.avatars[avatarID]
return pb.IPerspective, avatar, lambda:None

database lookup and unpickling
def requestAvatar(self, avatarID, mind, *interfaces):

assert pb.IPerspective in interfaces
d = self.database.fetchAvatar(avatarID)
d.addCallback(self.doUnpickle)
return pb.IPerspective, d, lambda:None

def doUnpickle(self, pickled):
avatar = pickle.loads(pickled)
return avatar

288 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.cred.checkers.AllowAnonymousAccess.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.cred.checkers.InMemoryUsernamePasswordDatabaseDontUse.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.cred.credentials.Anonymous.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.PBClientFactory.login.html

Twisted Documentation, Release 16.0.0

everybody shares the same Avatar
def requestAvatar(self, avatarID, mind, *interfaces):

assert pb.IPerspective in interfaces
return pb.IPerspective, self.theOneAvatar, lambda:None

anonymous users share one Avatar, named users each get their own
def requestAvatar(self, avatarID, mind, *interfaces):

assert pb.IPerspective in interfaces
if avatarID == checkers.ANONYMOUS:

return pb.IPerspective, self.anonAvatar, lambda:None
else:

return pb.IPerspective, self.avatars[avatarID], lambda:None

anonymous users get independent (but temporary) Avatars
named users get their own persistent one
def requestAvatar(self, avatarID, mind, *interfaces):

assert pb.IPerspective in interfaces
if avatarID == checkers.ANONYMOUS:

return pb.IPerspective, MyAvatar(), lambda:None
else:

return pb.IPerspective, self.avatars[avatarID], lambda:None

The last example, note that the new MyAvatar instance is not saved anywhere: it will vanish when the connection is
dropped. By contrast, the avatars that live in the self.avatars dictionary will probably get persisted into the .tap
file along with the Realm, the Portal, and anything else that is referenced by the top-level Application object. This is
an easy way to manage saved user profiles.

Connecting and Disconnecting

It may be useful for your Avatars to be told when remote clients gain (and lose) access to them. For example, and
Avatar might be updated by something in the server, and if there are clients attached, it should update them (through
the “mind” argument which lets the Avatar do callRemote on the client).

One common idiom which accomplishes this is to have the Realm tell the avatar that a remote client has just attached.
The Realm can also ask the protocol to let it know when the connection goes away, so it can then inform the Avatar that
the client has detached. The third member of the requestAvatar return tuple is a callable which will be invoked
when the connection is lost.

class MyPerspective(pb.Avatar):
def __init__(self):

self.clients = []
def attached(self, mind):

self.clients.append(mind)
print "attached to", mind

def detached(self, mind):
self.clients.remove(mind)
print "detached from", mind

def update(self, message):
for c in self.clients:

c.callRemote("update", message)

class MyRealm:
def requestAvatar(self, avatarID, mind, *interfaces):

assert pb.IPerspective in interfaces
avatar = self.avatars[avatarID]
avatar.attached(mind)

2.1. Developer Guides 289

Twisted Documentation, Release 16.0.0

return pb.IPerspective, avatar, lambda a=avatar:a.detached(mind)

Viewable

Once you have IPerspective objects (i.e. the Avatar) to represent users, the Viewable class can come into play.
This class behaves a lot like Referenceable : it turns into a RemoteReference when sent over the wire, and
certain methods can be invoked by the holder of that reference. However, the methods that can be called have names
that start with view_ instead of remote_ , and those methods are always called with an extra perspective
argument that points to the Avatar through which the reference was sent:

class Foo(pb.Viewable):
def view_doFoo(self, perspective, arg1, arg2):

pass

This is useful if you want to let multiple clients share a reference to the same object. The view_ methods can use the
“perspective” argument to figure out which client is calling them. This gives them a way to do additional permission
checks, do per-user accounting, etc.

This is the shortcut which makes per-user-per-group capability objects much easier to use. Instead of creating such
per-(user,group) objects, you just have per-group objects which inherit from pb.Viewable , and give the user
references to them. The local pb.Avatar object will automatically show up as the “perspective” argument in the
view_* method calls, give you a chance to involve the Avatar in the process.

Chat Server with Avatars

Combining all the above techniques, here is an example chat server which uses a fixed set of identities (say, for the
three members of your bridge club, who hang out in “#NeedAFourth” hoping that someone will discover your server,
guess somebody’s password, break in, join the group, and also be available for a game next Saturday afternoon).

chatserver.py

#!/usr/bin/env python

Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

from zope.interface import implements

from twisted.cred import portal, checkers
from twisted.spread import pb
from twisted.internet import reactor

class ChatServer:
def __init__(self):

self.groups = {} # indexed by name

def joinGroup(self, groupname, user, allowMattress):
if groupname not in self.groups:

self.groups[groupname] = Group(groupname, allowMattress)
self.groups[groupname].addUser(user)
return self.groups[groupname]

class ChatRealm:
implements(portal.IRealm)

290 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.Viewable.html

Twisted Documentation, Release 16.0.0

def requestAvatar(self, avatarID, mind, *interfaces):
assert pb.IPerspective in interfaces
avatar = User(avatarID)
avatar.server = self.server
avatar.attached(mind)
return pb.IPerspective, avatar, lambda a=avatar:a.detached(mind)

class User(pb.Avatar):
def __init__(self, name):

self.name = name
def attached(self, mind):

self.remote = mind
def detached(self, mind):

self.remote = None
def perspective_joinGroup(self, groupname, allowMattress=True):

return self.server.joinGroup(groupname, self, allowMattress)
def send(self, message):

self.remote.callRemote("print", message)

class Group(pb.Viewable):
def __init__(self, groupname, allowMattress):

self.name = groupname
self.allowMattress = allowMattress
self.users = []

def addUser(self, user):
self.users.append(user)

def view_send(self, from_user, message):
if not self.allowMattress and "mattress" in message:

raise ValueError, "Don't say that word"
for user in self.users:

user.send("<%s> says: %s" % (from_user.name, message))

realm = ChatRealm()
realm.server = ChatServer()
checker = checkers.InMemoryUsernamePasswordDatabaseDontUse()
checker.addUser("alice", "1234")
checker.addUser("bob", "secret")
checker.addUser("carol", "fido")
p = portal.Portal(realm, [checker])

reactor.listenTCP(8800, pb.PBServerFactory(p))
reactor.run()

Notice that the client uses perspective_joinGroup to both join a group and retrieve a RemoteReference
to the Group object. However, the reference they get is actually to a special intermediate object called a
pb.ViewPoint . When they do group.callRemote("send", "message") , their avatar is inserted into
the argument list that Group.view_send actually sees. This lets the group get their username out of the Avatar
without giving the client an opportunity to spoof someone else.

The client side code that joins a group and sends a message would look like this:

chatclient.py

#!/usr/bin/env python
Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

from twisted.spread import pb
from twisted.internet import reactor

2.1. Developer Guides 291

Twisted Documentation, Release 16.0.0

from twisted.cred import credentials

class Client(pb.Referenceable):

def remote_print(self, message):
print message

def connect(self):
factory = pb.PBClientFactory()
reactor.connectTCP("localhost", 8800, factory)
def1 = factory.login(credentials.UsernamePassword("alice", "1234"),

client=self)
def1.addCallback(self.connected)
reactor.run()

def connected(self, perspective):
print "connected, joining group #NeedAFourth"
this perspective is a reference to our User object. Save a reference
to it here, otherwise it will get garbage collected after this call,
and the server will think we logged out.
self.perspective = perspective
d = perspective.callRemote("joinGroup", "#NeedAFourth")
d.addCallback(self.gotGroup)

def gotGroup(self, group):
print "joined group, now sending a message to all members"
'group' is a reference to the Group object (through a ViewPoint)
d = group.callRemote("send", "You can call me Al.")
d.addCallback(self.shutdown)

def shutdown(self, result):
reactor.stop()

Client().connect()

2.1.46 PB Limits

There are a number of limits you might encounter when using Perspective Broker. This document is an attempt to
prepare you for as many of them as possible so you can avoid them or at least recognize them when you do run into
them.

Banana Limits

Perspective Broker is implemented in terms of a simpler, less functional protocol called Banana. Twisted’s implemen-
tation of Banana imposes a limit on the length of any sequence-like data type. This applies directly to lists and strings
and indirectly to dictionaries, instances and other types. The purpose of this limit is to put an upper bound on the
amount of memory which will be allocated to handle a message received over the network. Without, a malicious peer
could easily perform a denial of service attack resulting in exhaustion of the receiver’s memory. The basic limit is 640
* 1024 bytes, defined by twisted.spread.banana.SIZE_LIMIT . It’s possible to raise this limit by changing
this value (but take care to change it on both sides of the connection).

Another limit imposed by Twisted’s Banana implementation is a limit on the size of long integers. The purpose of this
limit is the same as the SIZE_LIMIT . By default, only integers between -2 ** 448 and 2 ** 448 (exclusive) can be

292 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

transferred. This limit can be changed using twisted.spread.banana.setPrefixLimit .

Perspective Broker Limits

Perspective Broker imposes an additional limit on top of these lower level limits. The number of local objects for
which remote references may exist at a single time over a single connection, by default, is limited to 1024, defined by
twisted.spread.pb.MAX_BROKER_REFS . This limit also exists to prevent memory exhaustion attacks.

2.1.47 Porting to Python 3

Introduction

Twisted is currently being ported to work with Python 3.3. This document covers Twisted-specific issues in porting
your code to Python 3.

Only some parts of Twisted have been ported, and therefore only a subset of modules are installed under Python 3.
You can see the full list of ported modules in twisted.python.dist3.

API Differences

twisted.python.failure

Failure.trap raises itself (i.e. a Failure) in Python 2. In Python 3, the wrapped exception will be re-raised.

Byte Strings and Text Strings

Several APIs which on Python 2 accepted or produced byte strings (instances of str , sometimes just called bytes)
have changed to accept or produce text strings (instances of str , sometimes just called text or unicode) on Python 3.

From twisted.internet.address , the IPv4Address and IPv6Address classes have had two attributes
change from byte strings to text strings: type and host .

twisted.python.log has shifted significantly towards text strings from byte strings. Logging events, particular
those produced by a call like msg("foo") , must now be text strings. Consequently, on Python 3, event dictionaries
passed to log observes will contain text strings where they previously contained byte strings.

twisted.python.runtime.platformType and the return value from
twisted.python.runtime.Platform.getType are now both text strings.

twisted.python.filepath.FilePath has not changed. It supports only byte strings. This will probably
require applications to update their usage of FilePath , at least to pass explicit byte string literals rather than
“native” string literals (which are text on Python 3).

reactor.addSystemEventTrigger arguments that were previously byte strings are now native strings.

twisted.names.dns deals with strings with a wide range of meanings, often several for each DNS record type.
Most of these strings have remained as byte strings, which will probably require application updates (for the reason
given in the FilePath section above). Some strings have changed to text strings, though. Any string representing
a human readable address (for example, Record_A ‘s address parameter) is now a text string. Additionally,
time-to-live (ttl) values given as strings must now be given as text strings.

twisted.web.resource.IResource continues to deal with URLs and all URL-derived values as byte strings.

twisted.web.resource.ErrorPage has several string attributes (template , brief , and detail) which
were previously byte strings. On Python 3 only, these must now be text strings.

2.1. Developer Guides 293

https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.banana.setPrefixLimit.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.python.dist3.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.python.failure.Failure.trap.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.python.failure.Failure.html

Twisted Documentation, Release 16.0.0

2.1.48 Twisted Positioning

twisted.positioning: geolocation in Twisted

Introduction

twisted.positioning is a package for doing geospatial positioning (trying to find where you are on Earth) using
Twisted.

High-level overview

In twisted.positioning, you write an IPositioningReceiver implementation that will get called whenever some
information about your position is known (such as position, altitude, heading...). The package provides a base class,
BasePositioningReceiver you might want to use that implements all of the receiver methods as stubs.

Secondly, you will want a positioning source, which will call your IPositioningReceiver. Currently,
twisted.positioning provides an NMEA implementation, which is a standard protocol spoken by many posi-
tioning devices, usually over a serial port.

Examples

nmealogger.py

#!/usr/bin/env python
Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.
"""
Connects to an NMEA device, logs beacon information and position.
"""
import sys
from twisted.internet import reactor, serialport
from twisted.positioning import base, nmea
from twisted.python import log, usage

class PositioningReceiver(base.BasePositioningReceiver):
def positionReceived(self, latitude, longitude):

log.msg("I'm at {} lat, {} lon".format(latitude, longitude))

def beaconInformationReceived(self, beaconInformation):
template = "{0.seen} beacons seen, {0.used} beacons used"
log.msg(template.format(beaconInformation))

class Options(usage.Options):
optParameters = [

['baud-rate', 'b', 4800, "Baud rate (default: 4800)"],
['serial-port', 'p', '/dev/ttyS0', 'Serial Port device'],

]

def run():

294 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.positioning.ipositioning.IPositioningReceiver.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.positioning.base.BasePositioningReceiver.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.positioning.ipositioning.IPositioningReceiver.html

Twisted Documentation, Release 16.0.0

log.startLogging(sys.stdout)

opts = Options()
try:

opts.parseOptions()
except usage.UsageError, message:

print "{}: {}".format(sys.argv[0], message)
return

positioningReceiver = PositioningReceiver()
nmeaReceiver = nmea.NMEAAdapter(positioningReceiver)
proto = nmea.NMEAProtocol(nmeaReceiver)

port, baudrate = opts["serial-port"], opts["baud-rate"]
serialport.SerialPort(proto, port, reactor, baudrate=baudrate)

reactor.run()

if __name__ == "__main__":
run()

• Connects to an NMEA device on a serial port, and reports whenever it receives a position.

2.1.49 Twisted Glossary

adaptee

An object that has been adapted, also called “original” . See Adapter .

Adapter

An object whose sole purpose is to implement an Interface for another object. See Interfaces and Adapters
.

Application

A twisted.application.service.Application . There are HOWTOs on creating and manipulating them as a
system-administrator, as well as using them in your code.

Avatar

(from Twisted Cred) business logic for specific user. For example, in PB these are perspectives, in POP3
these are mailboxes, and so on.

Banana

The low-level data marshalling layer of Twisted Spread . See twisted.spread.banana .

Broker

A twisted.spread.pb.Broker , the object request broker for Twisted Spread .

cache

A way to store data in readily accessible place for later reuse. Caching data is often done because the data
is expensive to produce or access. Caching data risks being stale, or out of sync with the original data.

component

2.1. Developer Guides 295

https://twistedmatrix.com/documents/16.0.0/api/twisted.python.components.Adapter.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.application.service.Application.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.application.service.Application.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.banana.Banana.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.banana.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.Broker.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.Broker.html

Twisted Documentation, Release 16.0.0

A special kind of (persistent) Adapter that works with a twisted.python.components.Componentized . See
also Interfaces and Adapters .

Componentized

A Componentized object is a collection of information, separated into domain-specific or role-specific
instances, that all stick together and refer to each other. Each object is an Adapter , which, in the context
of Componentized, we call “components” . See also Interfaces and Adapters .

conch

Twisted’s SSH implementation.

Connector

Object used to interface between client connections and protocols, usually used with a
twisted.internet.protocol.ClientFactory to give you control over how a client connection reconnects. See
twisted.internet.interfaces.IConnector and Writing Clients .

Consumer

An object that consumes data from a Producer . See twisted.internet.interfaces.IConsumer .

Cred

Twisted’s authentication API, twisted.cred . See Introduction to Twisted Cred and Twisted Cred usage .

credentials

A username/password, public key, or some other information used for authentication.

credential checker

Where authentication actually happens. See ICredentialsChecker .

CVSToys

A nifty set of tools for CVS, available at http://twistedmatrix.com/users/acapnotic/wares/code/CVSToys/
.

Daemon

A background process that does a job or handles client requests. Daemon is a Unix term; service is the
Windows equivalent.

Deferred

A instance of twisted.internet.defer.Deferred , an abstraction for handling chains of callbacks and error
handlers (“errbacks”). See the Deferring Execution HOWTO.

Enterprise

Twisted’s RDBMS support. It contains twisted.enterprise.adbapi for asynchronous access to any standard
DB-API 2.0 module. See Introduction to Twisted Enterprise for more details.

errback

A callback attached to a Deferred with .addErrback to handle errors.

Factory

In general, an object that constructs other objects. In Twisted, a Factory usually refers to a
twisted.internet.protocol.Factory , which constructs Protocol instances for incoming or outgoing con-
nections. See Writing Servers and Writing Clients .

Failure

296 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.python.components.Adapter.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.python.components.Componentized.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.python.components.Componentized.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.python.components.Adapter.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.conch.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.protocol.ClientFactory.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IConnector.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IConsumer.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.cred.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.cred.checkers.ICredentialsChecker.html
http://twistedmatrix.com/users/acapnotic/wares/code/CVSToys/
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.enterprise.adbapi.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.protocol.Factory.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.protocol.Factory.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.python.failure.Failure.html

Twisted Documentation, Release 16.0.0

Basically, an asynchronous exception that contains traceback information; these are used for passing
errors through asynchronous callbacks.

im

Abbreviation of “(Twisted) Instance Messenger” .

Instance Messenger

Instance Messenger is a multi-protocol chat program that comes with Twisted. It can communicate via
TOC with the AOL servers, via IRC, as well as via PB with Twisted Words . See twisted.words.im .

Interface

A class that defines and documents methods that a class conforming to that interface needs to have. A col-
lection of core twisted.internet interfaces can be found in twisted.internet.interfaces . See also Interfaces
and Adapters .

Jelly

The serialization layer for Twisted Spread , although it can be used separately from Twisted Spread as
well. It is similar in purpose to Python’s standard pickle module, but is more network-friendly, and
depends on a separate marshaller (Banana , in most cases). See twisted.spread.jelly .

Manhole

A debugging/administration interface to a Twisted application.

Microdom

A partial DOM implementation using SUX . It is simple and pythonic, rather than strictly standards-
compliant. See twisted.web.microdom .

Names

Twisted’s DNS server, found in twisted.names .

Nevow

The successor to Woven ; available from Divmod .

PB

Abbreviation of “Perspective Broker” .

Perspective Broker

The high-level object layer of Twisted Spread , implementing semantics for method calling and object
copying, caching, and referencing. See twisted.spread.pb .

Portal

Glues credential checkers and realm s together.

Producer

An object that generates data a chunk at a time, usually to be processed by a Consumer . See
twisted.internet.interfaces.IProducer .

Protocol

In general each network connection has its own Protocol instance to manage connection-specific state.
There is a collection of standard protocol implementations in twisted.protocols . See also Writing Servers
and Writing Clients .

PSU

There is no PSU.

2.1. Developer Guides 297

https://twistedmatrix.com/documents/16.0.0/api/twisted.words.im.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.jelly.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.microdom.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.names.html
http://launchpad.net/nevow
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IProducer.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.protocol.Protocol.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.protocols.html

Twisted Documentation, Release 16.0.0

Reactor

The core event-loop of a Twisted application. See Reactor Basics .

Reality

See “Twisted Reality“

realm

(in Twisted Cred) stores avatars and perhaps general business logic. See IRealm .

Resource

A twisted.web.resource.Resource , which are served by Twisted Web. Resources can be as simple as a
static file on disk, or they can have dynamically generated content.

Service

A twisted.application.service.Service . See Application howto for a description of how they relate to
Applications .

Spread

Twisted Spread is Twisted’s remote-object suite. It consists of three layers: Perspective Broker , Jelly and
Banana. See Writing Applications with Perspective Broker .

SUX

S mall U ncomplicated X ML, Twisted’s simple XML parser written in pure Python. See twisted.web.sux
.

TAC

A T wisted A pplication C onfiguration is a Python source file, generally with the .tac extension, which
defines configuration to make an application runnable using twistd .

TAP

T wisted A pplication P ickle (no longer supported), or simply just a*T* wisted AP plication. A serialised
application that was created with mktap (no longer supported) and runnable by twistd . See:doc:Using
the Utilities <basics> .

Trial

twisted.trial , Twisted’s unit-testing framework, based on the unittest standard library module. See
also Writing tests for Twisted code .

Twisted Matrix Laboratories

The team behind Twisted. http://twistedmatrix.com/ .

Twisted Reality

In days of old, the Twisted Reality multiplayer text-based interactive-fiction system was the main focus of
Twisted Matrix Labs; Twisted, the general networking framework, grew out of Reality’s need for better
network functionality. Twisted Reality has been superseded by the Imaginary project.

usage

The twisted.python.usage module, a replacement for the standard getopt module for parsing command-
lines which is much easier to work with. See Parsing command-lines .

Words

Twisted Words is a multi-protocol chat server that uses the Perspective Broker protocol as its native
communication style. See twisted.words .

298 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.cred.portal.IRealm.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.resource.Resource.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.resource.Resource.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.application.service.Service.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.sux.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.trial.html
http://twistedmatrix.com/
http://launchpad.net/imaginary
https://twistedmatrix.com/documents/16.0.0/api/twisted.python.usage.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.python.usage.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.words.html

Twisted Documentation, Release 16.0.0

Woven

W eb O bject V isualization En vironment. A templating system previously, but no longer, included with
Twisted. Woven has largely been superseded by Divmod Nevow .

2.1.50 Debugging Python(Twisted) with Emacs

• Open up your project files. sometimes emacs can’t find them if you don’t have them open before-hand.

• Make sure you have a program called pdb somewhere in your PATH, with the following contents:

#!/bin/sh
exec python -m pdb $1 $2 $3 $4 $5 $6 $7 $8 $9

• Run M-x pdb in emacs. If you usually run your program as python foo.py , your command line should
be pdb foo.py , for twistd and trial just add -b to the command line, e.g.: twistd -b -y my.tac

• While pdb waits for your input, go to a place in your code and hit C-x SPC to insert a break-point. pdb should
say something happy. Do this in as many points as you wish.

• Go to your pdb buffer and hit c ; this runs as normal until a break-point is found.

• Once you get to a breakpoint, use s to step, n to run the current line without stepping through the functions it
calls, w to print out the current stack, u and d to go up and down a level in the stack, p foo to print result of
expression foo .

• Recommendations for effective debugging:

– use p self a lot; just knowing the class where the current code is isn’t enough most of the time.

– use w to get your bearings, it’ll re-display the current-line/arrow

– after you use w , use u and d and lots more p self on the different stack-levels.

– If you’ve got a big code-path that you need to grok, keep another buffer open and list the code-path there
(e.g., I had a nasty-evil Deferred recursion, and this helped me tons)

• Introduction

– Executive summary

Connecting your software - and having fun too!

• Getting Started

– Writing a TCP server

Basic network servers with Twisted.

– Writing a TCP client

And basic clients.

– Test-driven development with Twisted

Code without tests is broken by definition; Twisted makes it easy to test your network code.

– Tutorial: Twisted From Scratch

1. The Evolution of Finger: building a simple finger service

2. The Evolution of Finger: adding features to the finger service

3. The Evolution of Finger: cleaning up the finger code

4. The Evolution of Finger: moving to a component based architecture

2.1. Developer Guides 299

http://launchpad.net/nevow

Twisted Documentation, Release 16.0.0

5. The Evolution of Finger: pluggable backends

6. The Evolution of Finger: a clean web frontend

7. The Evolution of Finger: Twisted client support using Perspective Broker

8. The Evolution of Finger: using a single factory for multiple protocols

9. The Evolution of Finger: a Twisted finger client

10. The Evolution of Finger: making a finger library

11. The Evolution of Finger: configuration and packaging of the finger service

– Setting up the TwistedQuotes application

– Designing a Twisted application

• Networking and Other Event Sources

– Twisted Internet

A brief overview of the twisted.internet package.

– Reactor basics

The event loop at the core of your program.

– Using SSL in Twisted

Add some security to your network transport.

– UDP Networking

How to use Twisted’s UDP implementation, including multicast and broadcast functionality.

– Using processes

Launching sub-processes, the correct way.

– Introduction to Deferreds

Like callback functions, only a lot better.

– Deferred reference

In-depth information on Deferreds.

– Generating deferreds

More about Deferreds.

– Scheduling

Timeouts, repeated events, and more: when you want things to happen later.

– Using threads

Running code in threads, and interacting with Twisted in a thread-safe manner.

– Producers and Consumers: Efficient High-Volume Streaming

How to pause when buffers fill up.

– Choosing a reactor and GUI toolkit integration

GTK+, Windows, epoll() and more: use your GUI of choice, or a faster event loop.

• High-Level Infrastructure

300 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

– Getting Connected with Endpoints

Create configurable applications that support multiple transports (e.g. TCP and SSL).

– Interfaces and Adapters (Component Architecture)

When inheritance isn’t enough.

– Cred: Pluggable Authentication

Implementing authentication and authorization that is configurable, pluggable and re-usable.

– Twisted’s plugin architecture

A generic plugin system for extendable programs.

• Deploying Twisted Applications

– Helper programs and scripts (twistd, ..)

twistd lets you daemonize and run your application.

– Using the Twisted Application Framework

Writing code that twistd can run.

– Writing Twisted Application Plugins for twistd

More powerful twistd deployment method.

– Deploying Twisted with systemd

Use systemd to launch and monitor Twisted applications.

• Utilities

– Emitting and Observing Logs

Keep a record of what your application is up to, and inspect that record to discover interesting information.
(You may also be interested in the legacy logging system if you are maintaining code written to work with
older versions of Twisted.)

– Symbolic constants

enum-like constants.

– Twisted RDBMS support with adbapi

Using SQL with your relational database via DB-API adapters.

– Parsing command-line arguments

The command-line argument parsing used by twistd .

– Using Dirdbm: Directory-based Storage

A simplistic way to store data on your filesystem.

– Tips for writing tests for Twisted code using Trial

More information on writing tests.

– Extremely Low-Level Socket Operations

Using wrappers for sendmsg(2) and recvmsg(2).

• Asynchronous Messaging Protocol (AMP)

– Asynchronous Messaging Protocol Overview

A two-way asynchronous message passing protocol, for when HTTP isn’t good enough.

2.1. Developer Guides 301

Twisted Documentation, Release 16.0.0

• Perspective Broker

– Twisted Spread

A remote method invocation (RMI) protocol: call methods on remote objects.

– Introduction to Perspective Broker

– Using Perspective Broker

– Managing Clients of Perspectives

– Passing Complex Types

– Authentication with Perspective Broker

– PB Limits

• Positioning

– Twisted Positioning

• Appendix

– Porting to Python 3

– Glossary

– Tips for debugging with emacs

2.2 Examples

2.2.1 Simple Echo server and client

• simpleclient.py - simple TCP client

• simpleserv.py - simple TCP echo server

2.2.2 Chat

• chatserver.py - shows how to communicate between clients

2.2.3 Echo server & client variants

• echoserv.py - variant on a simple TCP echo server

• echoclient.py - variant on a simple TCP client

• echoserv_udp.py - simplest possible UDP server

• echoclient_udp.py - simple UDP client

• echoserv_ssl.py - simple SSL server

• echoclient_ssl.py - simple SSL client

302 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

2.2.4 AMP server & client variants

• ampserver.py - do math using AMP

• ampclient.py - do math using AMP

2.2.5 Perspective Broker

• pbsimple.py - simplest possible PB server

• pbsimpleclient.py - simplest possible PB client

• pbbenchclient.py - benchmarking client

• pbbenchserver.py - benchmarking server

• pbecho.py - echo server that uses login

• pbechoclient.py - echo client using login

• pb_exceptions.py - example of exceptions over PB

• pbgtk2.py - example of using GTK2 with PB

• pbinterop.py - shows off various types supported by PB

• bananabench.py - benchmark for banana

2.2.6 Cred

• cred.py - Authenticate a user with an in-memory username/password database

• dbcred.py - Using a database backend to authenticate a user

2.2.7 GUI

• wxdemo.py - demo of wxPython integration with Twisted

• pbgtk2.py - example of using GTK2 with PB

• pyuidemo.py - PyUI

2.2.8 FTP examples

• ftpclient.py - example of using the FTP client

• ftpserver.py - create an FTP server which serves files for anonymous users from the working directory and
serves files for authenticated users from /home.

2.2.9 Logging

• twistd-logging.tac - logging example using ILogObserver

• testlogging.py - use twisted.python.log to log errors to standard out

• rotatinglog.py - example of log file rotation

2.2. Examples 303

Twisted Documentation, Release 16.0.0

2.2.10 POSIX Specific Tricks

• sendfd.py, recvfd.py - send and receive file descriptors over UNIX domain sockets

2.2.11 Miscellaneous

• shaper.py - example of rate-limiting your web server

• stdiodemo.py - example using stdio, Deferreds, LineReceiver and twisted.web.client.

• mouse.py - example using MouseMan protocol with the SerialPort transport

• ptyserv.py - serve shells in pseudo-terminals over TCP

• courier.py - example of interfacing to Courier’s mail filter interface

• longex.py - example of doing arbitrarily long calculations nicely in Twisted

• longex2.py - using generators to do long calculations

• stdin.py - reading a line at a time from standard input without blocking the reactor

• streaming.py - example of a push producer/consumer system

• filewatch.py - write the content of a file to standard out one line at a time

• shoutcast.py - example Shoutcast client

• gpsfix.py - example using the SerialPort transport and GPS protocols to display fix data as it is received
from the device

• wxacceptance.py - acceptance tests for wxreactor

• postfix.py - test application for PostfixTCPMapServer

• udpbroadcast.py - broadcasting using UDP

• tls_alpn_npn_client.py - example of TLS next-protocol negotiation on the client side using NPN and
ALPN.

• tls_alpn_npn_server.py - example of TLS next-protocol negotiation on the server side using NPN and
ALPN.

2.3 Specifications

2.3.1 Banana Protocol Specifications

Introduction

Banana is an efficient, extendable protocol for sending and receiving s-expressions. A s-expression in this context is
a list composed of bytes, integers, large integers, floats and/or s-expressions. Unicode is not supported (but can be
encoded to and decoded from bytes on the way into and out of Banana). Unsupported types must be converted into a
supported type before sending them with Banana.

304 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

Banana Encodings

The banana protocol is a stream of data composed of elements. Each element has the following general structure -
first, the length of element encoded in base-128, least significant bit first. For example length 4674 will be sent as
0x42 0x24 . For certain element types the length will be omitted (e.g. float) or have a different meaning (it is the
actual value of integer elements).

Following the length is a delimiter byte, which tells us what kind of element this is. Depending on the element type,
there will then follow the number of bytes specified in the length. The byte’s high-bit will always be set, so that we
can differentiate between it and the length (since the length bytes use 128-base, their high bit will never be set).

Element Types

Given a series of bytes that gave us length N, these are the different delimiter bytes:

List – 0x80

The following bytes are a list of N elements. Lists may be nested, and a child list counts as only one
element to its parent (regardless of how many elements the child list contains).

Integer – 0x81

The value of this element is the positive integer N. Following bytes are not part of this element. Integers
can have values of 0 <= N <= 2147483647.

String – 0x82

The following N bytes are a string element.

Negative Integer – 0x83

The value of this element is the integer N * -1, i.e. -N. Following bytes are not part of this element.
Negative integers can have values of 0 >= -N >= -2147483648.

Float - 0x84

The next 8 bytes are the float encoded in IEEE 754 floating-point “double format” bit layout. No length
bytes should have been defined.

Large Integer – 0x85

The value of this element is the positive large integer N. Following bytes are not part of this element.
Large integers have no size limitation.

Large Negative Integer – 0x86

The value of this element is the negative large integer -N. Following bytes are not part of this element.
Large integers have no size limitation.

Large integers are intended for arbitrary length integers. Regular integers types (positive and negative) are limited to
32-bit values.

Examples

Here are some examples of elements and their encodings - the type bytes are marked in bold:

1

0x01 **0x81**

-1

2.3. Specifications 305

Twisted Documentation, Release 16.0.0

0x01 **0x83**

1.5

0x84 0x3f 0xf8 0x00 0x00 0x00 0x00 0x00 0x00

"hello"

0x05 **0x82** 0x68 0x65 0x6c 0x6c 0x6f

[]

0x00 **0x80**

[1, 23]

0x02 **0x80** 0x01 **0x81** 0x17 **0x81**

123456789123456789

0x15 0x3e 0x41 0x66 0x3a 0x69 0x26 0x5b 0x01 **0x85**

[1, ["hello"]]

0x02 **0x80** 0x01 **0x81** 0x01 **0x80** 0x05 **0x82** 0x68 0x65
0x6c 0x6c 0x6f

Profiles

The Banana protocol is extendable. Therefore, it supports the concept of profiles. Profiles allow developers to extend
the banana protocol, adding new element types, while still keeping backwards compatibility with implementations that
don’t support the extensions. The profile used in each session is determined at the handshake stage (see below.)

A profile is specified by a unique string. This specification defines two profiles - "none" and "pb" . The "none"
profile is the standard profile that should be supported by all Banana implementations. Additional profiles may be
added in the future.

Extensions defined by a profile may only be used if that profile has been selected by client and server.

The "none" Profile

The "none" profile is identical to the delimiter types listed above. It is highly recommended that all Banana clients
and servers support the "none" profile.

The "pb" Profile

The "pb" profile is intended for use with the Perspective Broker protocol, that runs on top of Banana. Basically, it
converts commonly used PB strings into shorter versions, thus minimizing bandwidth usage. It starts with a single
byte, which tells us to which string element to convert it, and ends with the delimiter byte, 0x87 , which should not
be prefixed by a length.

0x01 ‘None’

0x02 ‘class’

0x03 ‘dereference’

0x04 ‘reference’

0x05 ‘dictionary’

306 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

0x06 ‘function’

0x07 ‘instance’

0x08 ‘list’

0x09 ‘module’

0x0a ‘persistent’

0x0b ‘tuple’

0x0c ‘unpersistable’

0x0d ‘copy’

0x0e ‘cache’

0x0f ‘cached’

0x10 ‘remote’

0x11 ‘local’

0x12 ‘lcache’

0x13 ‘version’

0x14 ‘login’

0x15 ‘password’

0x16 ‘challenge’

0x17 ‘logged_in’

0x18 ‘not_logged_in’

0x19 ‘cachemessage’

0x1a ‘message’

0x1b ‘answer’

0x1c ‘error’

0x1d ‘decref’

0x1e ‘decache’

0x1f ‘uncache’

Protocol Handshake and Behaviour

The initiating side of the connection will be referred to as “client” , and the other side as “server” .

Upon connection, the server will send the client a list of string elements, signifying the profiles it supports. It is
recommended that "none" be included in this list. The client then sends the server a string from this list, telling the
server which profile it wants to use. At this point the whole session will use this profile.

Once a profile has been established, the two sides may start exchanging elements. There is no limitation on order
or dependencies of messages. Any such limitation (e.g. “server can only send an element to client in response to a
request from client”) is application specific.

Upon receiving illegal messages, failed handshakes, etc., a Banana client or server should close its connection.

• Banana Protocol Specifications

2.3. Specifications 307

Twisted Documentation, Release 16.0.0

2.4 Development of Twisted

2.4.1 Naming Conventions

While this may sound like a small detail, clear method naming is important to provide an API that developers familiar
with event-based programming can pick up quickly.

Since the idea of a method call maps very neatly onto that of a received event, all event handlers are simply methods
named after past-tense verbs. All class names are descriptive nouns, designed to mirror the is-a relationship of the
abstractions they implement. All requests for notification or transmission are present-tense imperative verbs.

Here are some examples of this naming scheme:

• An event notification of data received from peer:dataReceived(data)

• A request to send data: write(data)

• A class that implements a protocol: Protocol

The naming is platform neutral. This means that the names are equally appropriate in a wide variety of environments,
as long as they can publish the required events.

It is self-consistent. Things that deal with TCP use the acronym TCP, and it is always capitalized. Dropping, losing,
terminating, and closing the connection are all referred to as “losing” the connection. This symmetrical naming allows
developers to easily locate other API calls if they have learned a few related to what they want to do.

It is semantically clear. The semantics of dataReceived are simple: there are some bytes available for processing. This
remains true even if the lower-level machinery to get the data is highly complex.

2.4.2 Philosophy

Abstraction Levels

When implementing interfaces to the operating system or the network, provide two interfaces:

• One that doesn’t hide platform specific or library specific functionality. For example, you can use file descriptors
on Unix, and Win32 events on Windows.

• One that provides a high level interface hiding platform specific details. E.g. process running uses same API on
Unix and Windows, although the implementation is very different.

Restated in a more general way:

• Provide all low level functionality for your specific domain, without limiting the policies and decisions the user
can make.

• Provide a high level abstraction on top of the low level implementation (or implementations) which implements
the common use cases and functionality that is used in most cases.

Learning Curves

Require the minimal amount of work and learning on part of the user to get started. If this means they have less
functionality, that’s OK, when they need it they can learn a bit more. This will also lead to a cleaner, easier to test
design.

For example - using twistd is a great way to deploy applications. But to get started you don’t need to know about it.
Later on you can start using twistd, but its usage is optional.

308 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

2.4.3 Security

We need to do a full audit of Twisted, module by module. This document list the sort of things you want to look for
when doing this, or when writing your own code.

Bad input

Any place we receive untrusted data, we need to be careful. In some cases we are not careful enough. For example, in
HTTP there are many places where strings need to be converted to ints, so we use int() . The problem is that this
well accept negative numbers as well, whereas the protocol should only be accepting positive numbers.

Resource Exhaustion and DoS

Make sure we never allow users to create arbitrarily large strings or files. Some of the protocols still have issues like
this. Place a limit which allows reasonable use but will cut off huge requests, and allow changing of this limit.

Another operation to look out for are exceptions. They can fill up logs and take a lot of CPU time to render in web
pages.

2.4.4 Twisted Development Policy

Twisted Coding Standard

Naming

Try to choose names which are both easy to remember and meaningful. Some silliness is OK at the module naming
level (see twisted.spread ...) but when choosing class names, be as precise as possible.

Try to avoid overloaded terms. This rule is often broken, since it is incredibly difficult, as most normal words have
already been taken by some other software. More importantly, try to avoid meaningless words. In particular, words
like “handler” , “processor” , “engine” , “manager” and “component” don’t really indicate what something does, only
that it does something .

Use American spelling in both names and docstrings. For compound technical terms such as ‘filesystem’, use a
non-hyphenated spelling in both docstrings and code in order to avoid unnecessary capitalization.

Testing

Overview Twisted development should always be test-driven . The complete test suite in the head of the SVN
trunk is required to be passing on supported platforms at all times. Regressions in the test suite are addressed by
reverting whatever revisions introduced them. For complete documentation about testing Twisted itself, refer to the
Test Standard . What follows is intended to be a synopsis of the most important points.

Test Suite The Twisted test suite is spread across many subpackages of the twisted package. Many
older tests are in twisted.test . Others can be found at places such as twisted.web.test (for
twisted.web tests) or twisted.internet.test (for twisted.internet tests). The latter arrange-
ment, twisted.somepackage.test , is preferred for new tests except when a test module already exists in
twisted.test .

Parts of the Twisted test suite may serve as good examples of how to write tests for Twisted or for Twisted-based
libraries (newer parts of the test suite are generally better examples than older parts - check when the code you are
looking at was written before you use it as an example of what you should write). The names of test modules should

2.4. Development of Twisted 309

https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.html
http://en.wikipedia.org/wiki/Test-driven_development
http://buildbot.twistedmatrix.com/supported

Twisted Documentation, Release 16.0.0

begin with test_ so that they are automatically discoverable by test runners such as Trial. Twisted’s unit tests are
written using twisted.trial , an xUnit library which has been extensively customized for use in testing Twisted and
Twisted-based libraries.

Implementation (ie, non-test) source files should begin with a test-case-name tag which gives the name of any
test modules or packages which exercise them. This lets tools discover a subset of the entire test suite which they can
run first to find tests which might be broken by a particular change.

It is strongly suggested that developers learn to use Emacs, and use the twisted-dev.el file included in twisted-
emacs to bind the F9 key to “run unit tests” and bang on it frequently. Support for other editors is unavailable at this
time but we would love to provide it.

To run the whole Twisted test without using emacs, use trial:

$ bin/trial twisted

To run an individual test module, such as twisted/mail/test/test_pop3.py , specify the module name:

$ bin/trial twisted.mail.test.test_pop3

To run the tests associated with a particular implementation file, such as twisted/mail/pop3.py , use the
testmodule option:

$ bin/trial twisted/mail/pop3.py

All unit test methods should have docstrings specifying at a high level the intent of the test. That is, a description that
users of the method would understand.

If you modify, or write a new, HOWTO, please read the Lore documentation to learn how to format the docs.

Copyright Header

Whenever a new file is added to the repository, add the following license header at the top of the file:

Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

When you update existing files, if there is no copyright header, add one.

Whitespace

Indentation is 4 spaces per indent. Tabs are not allowed. It is preferred that every block appears on a new line, so that
control structure indentation is always visible.

Lines are flowed at 79 columns. They must not have trailing whitespace. Long lines must be wrapped using implied
line continuation inside parentheses; backslashes aren’t allowed. To handle long import lines, please repeat the import
like this:

from very.long.package import foo, bar, baz
from very.long.package import qux, quux, quuux

Top-level classes and functions must be separated with 3 blank lines, and class-level functions with 2 blank lines. The
control-L (i.e. ^L) form feed character must not be used.

310 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.trial.html
http://launchpad.net/twisted-emacs
http://launchpad.net/twisted-emacs
http://twistedmatrix.com/trac/wiki/TwistedLore

Twisted Documentation, Release 16.0.0

Modules

Modules must be named in all lower-case, preferably short, single words. If a module name contains multiple words,
they may be separated by underscores or not separated at all.

Modules must have a copyright message, a docstring and a reference to a test module that contains the bulk of its tests.
Use this template:

new_module_template.py

-*- test-case-name: <test module> -*-

Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

"""
Docstring goes here.
"""

__all__ = []

In most cases, modules should contain more than one class, function, or method; if a module contains only one object,
consider refactoring to include more related functionality in that module.

Depending on the situation, it is acceptable to have imports that look like this:

from twisted.internet.defer import Deferred

or like this:

from twisted.internet import defer

That is, modules should import modules or classes and functions , but not packages .

Wildcard import syntax may not be used by code in Twisted. These imports lead to code which is difficult to read and
maintain by introducing complexity which strains human readers and automated tools alike. If you find yourself with
many imports to make from a single module and wish to save typing, consider importing the module itself, rather than
its attributes.

Relative imports (or sibling imports) may not be used by code in Twisted. Relative imports allow certain circularities
to be introduced which can ultimately lead to unimportable modules or duplicate instances of a single module. Relative
imports also make the task of refactoring more difficult.

In case of local names conflicts due to import, use the as syntax, for example:

from twisted.trial import util as trial_util

The encoding must always be ASCII, so no coding cookie is necessary.

Packages

Package names should follow the same conventions as module names. All modules must be encapsulated in some
package. Nested packages may be used to further organize related modules.

__init__.py must never contain anything other than a docstring and (optionally) an __all__ attribute. Packages
are not modules and should be treated differently. This rule may be broken to preserve backwards compatibility if a
module is made into a nested package as part of a refactoring.

2.4. Development of Twisted 311

Twisted Documentation, Release 16.0.0

If you wish to promote code from a module to a package, for example, to break a large module out into several smaller
files, the accepted way to do this is to promote from within the module. For example,

parent/
--- __init__.py ---
import child

--- child.py ---
import parent
class Foo:

pass
parent.Foo = Foo

Every package should be added to the list in setup.py .

Packages must not depend circularly upon each other. To simplify maintaining this state, packages must also not
import each other circularly. While this applies to all packages within Twisted, one twisted.python deserves
particular attention, as it may not depend on any other Twisted package.

String Formatting Operations

When using string formatting operations like formatString % values you should always use a tuple if you’re
using non-mapping values . This is to avoid unexpected behavior when you think you’re passing in a single value,
but the value is unexpectedly a tuple, e.g.:

def foo(x):
return "Hi %s\n" % x

The example shows you can pass in foo("foo") or foo(3) fine, but if you pass in foo((1,2)) , it raises a
TypeError . You should use this instead:

def foo(x):
return "Hi %s\n" % (x,)

Docstrings

Docstrings should always be used to describe the purpose of methods, functions, classes, and modules. Moreover, all
methods, functions, classes, and modules must have docstrings. In addition to documenting the purpose of the object,
the docstring must document all of parameters or attributes of the object.

When documenting a class with one or more attributes which are initialized directly from the value of a __init__
argument by the same name (or differing only in that the attribute is private), it is sufficient to document the __init__
parameter (in the __init__ docstring). For example:

class Ninja(object):
"""
@ivar speed: See L{__init__}
@ivar _stealth: See C{stealth} parameter of L{__init__}
"""
def __init__(self, speed, stealth):

"""
@param speed: The maximum rate at which this ninja can travel (m/s)
@type speed: C{int} or C{float}

@param stealth: This ninja's ability to avoid being noticed in its
activities, as a percentage modifier.

@type: C{int}

312 Chapter 2. Twisted Core

http://docs.python.org/lib/typesseq-strings.html

Twisted Documentation, Release 16.0.0

"""
self.speed = speed
self._stealth = stealth

It is not necessary to have a second copy of the documentation for the attribute in the class docstring, only a reference
to the method (typically __init__ which does document the attribute’s meaning. Of course, if there is any interest-
ing additional behavior about the attribute that does not apply to the __init__ argument, that behavior should be
documented in the class docstring.

Docstrings are never to be used to provide semantic information about an object; this rule may be violated if the code
in question is to be used in a system where this is a requirement (such as Zope).

Docstrings should be indented to the level of the code they are documenting.

Docstrings should be triple-quoted. The opening and the closing of the docstrings should be on a line by themselves.
For example:

class Ninja(object):
"""
A L{Ninja} is a warrior specializing in various unorthodox arts of war.
"""
def attack(self, someone):

"""
Attack C{someone} with this L{Ninja}'s shuriken.
"""

Docstrings should be written in epytext format; more documentation is available in the Epytext Markup Language
documentation .

Additionally, to accommodate emacs users, single quotes of the type of the docstring’s triple-quote should be escaped.
This will prevent font-lock from accidentally fontifying large portions of the file as a string.

For example,

def foo2bar(f):
"""
Convert L{foo}s to L{bar}s.

A function that should be used when you have a C{foo} but you want a
C{bar}; note that this is a non-destructive operation. If this method
can't convert the C{foo} to a C{bar} it will raise a L{FooException}.

@param f: C{foo}
@type f: str

For example::

import wombat
def sample(something):

f = something.getFoo()
f.doFooThing()
b = wombat.foo2bar(f)
b.doBarThing()
return b

"""
Optionally, actual code can go here.

2.4. Development of Twisted 313

http://epydoc.sourceforge.net/manual-epytext.html
http://epydoc.sourceforge.net/manual-epytext.html

Twisted Documentation, Release 16.0.0

Comments

Start by reading the PEP8 Comments section. Ignore Documentation Strings section from PEP8 as Twisted uses a
different docstring standard.

FIXME/TODO comments must have an associated ticket and contain a reference to it in the form of a full URL to the
ticket. A brief amount of text should provide info about why the FIXME was added. It does not have to be the full
ticket description, just enough to help readers decide if their next step should be reading the ticket or continue reading
the code.

FIXME: https://twistedmatrix.com/trac/ticket/1235
Threads that have died before calling stop() are not joined.
for thread in threads:

thread.join()

Versioning

The API documentation should be marked up with version information. When a new API is added the class should be
marked with the epytext @since: field including the version number when the change was introduced. This version
number should be in the form x.y (for example, @since: 15.1).

Scripts

For each “script” , that is, a program you expect a Twisted user to run from the command-line, the following things
must be done:

1. Write a module in twisted.scripts which contains a callable global named run . This will be called by the
command line part with no arguments (it will usually read sys.argv). Feel free to write more functions or
classes in this module, if you feel they are useful to others.

2. Create a file which contains a shebang line for Python. For Twisted Core, this file should be placed in the bin/
directory; for example, bin/twistd . For sub-projects, it should be placed in bin/<subproject> ; for
example, the key-generation tool for the Conch sub-project is in bin/conch/ckeygen .

#!/usr/bin/env python

To make sure that the script is portable across different UNIX like operating systems we use the /usr/bin/env
command. The env command allows you to run a program in a modified environment. That way you don’t have to
search for a program via the PATH environment variable. This makes the script more portable but note that it is not
a foolproof method. Always make sure that /usr/bin/env exists or use a softlink/symbolic link to point it to the
correct path. Python’s distutils will rewrite the shebang line upon installation so this policy only covers the source files
in version control.

1. For core scripts, add this Twisted running-from-SVN header:

import sys
try:

import _preamble
except ImportError:

sys.clear_exc()

Or for sub-project scripts, add a modified version which also adjusts sys.path :

import sys, os
extra = os.path.dirname(os.path.dirname(sys.argv[0]))
sys.path.insert(0, extra)

314 Chapter 2. Twisted Core

http://www.python.org/dev/peps/pep-0008/#comments
https://twistedmatrix.com/documents/16.0.0/api/twisted.scripts.html

Twisted Documentation, Release 16.0.0

try:
import _preamble

except ImportError:
sys.clear_exc()

sys.path.remove(extra)

2. And end with:

from twisted.scripts.yourmodule import run
run()

3. Write a manpage and add it to the man folder of a subproject’s doc folder. On Debian systems you can find a
skeleton example of a manpage in /usr/share/doc/man-db/examples/manpage.example .

This will insure your program will work correctly for users of SVN, Windows releases and Debian packages.

Examples

For example scripts you expect a Twisted user to run from the command-line, add this Python shebang line at the top
of the file:

#!/usr/bin/env python

Standard Library Extension Modules

When using the extension version of a module for which there is also a Python version, place the import statement
inside a try/except block, and import the Python version if the import fails. This allows code to work on platforms
where the extension version is not available. For example:

try:
import cPickle as pickle

except ImportError:
import pickle

Use the “as” syntax of the import statement as well, to set the name of the extension module to the name of the Python
module.

Some modules don’t exist across all supported Python versions. For example, Python 2.3’s sets module was depre-
cated in Python 2.6 in favor of the set and frozenset builtins. twisted.python.compat would be the place to add
set and frozenset implementations that work across Python versions.

Classes

Classes are to be named in mixed case, with the first letter capitalized; each word separated by having its first letter
capitalized. Acronyms should be capitalized in their entirety. Class names should not be prefixed with the name of the
module they are in. Examples of classes meeting this criteria:

• twisted.spread.pb.ViewPoint

• twisted.parser.patterns.Pattern

Examples of classes not meeting this criteria:

• event.EventHandler

• main.MainGadget

2.4. Development of Twisted 315

https://twistedmatrix.com/documents/16.0.0/api/twisted.python.compat.html

Twisted Documentation, Release 16.0.0

An effort should be made to prevent class names from clashing with each other between modules, to re-
duce the need for qualification when importing. For example, a Service subclass for Forums might be named
twisted.forum.service.ForumService, and a Service subclass for Words might be twisted.words.service.WordsService.
Since neither of these modules are volatile (see above) the classes may be imported directly into the user’s namespace
and not cause confusion.

New-style Classes Classes and instances in Python come in two flavors: old-style or classic, and new-style. Up to
Python 2.1, old-style classes were the only flavour available to the user, new-style classes were introduced in Python
2.2 to unify classes and types. All classes added to Twisted should be written as new-style classes. If x is an instance
of a new-style class, then type(x) is the same as x.__class__ .

Methods

Methods should be in mixed case, with the first letter lower case, each word separated by having its first letter capital-
ized. For example, someMethodName , method .

Sometimes, a class will dispatch to a specialized sort of method using its name; for example, twisted.reflect.Accessor.
In those cases, the type of method should be a prefix in all lower-case with a trailing underscore, so method names
will have an underscore in them. For example, get_someAttribute . Underscores in method names in twisted
code are therefore expected to have some semantic associated with them.

Some methods, in particular addCallback and its cousins return self to allow for chaining calls. In this case, wrap
the chain in parenthesis, and start each chained call on a separate line, for example:

return (foo()
.addCallback(bar)
.addCallback(thud)
.addCallback(wozers))

Callback Arguments

There are several methods whose purpose is to help the user set up callback functions, for example De-
ferred.addCallback or the reactor’s callLater method. To make access to the callback as transparent as possible, most
of these methods use **kwargs to capture arbitrary arguments that are destined for the user’s callback. This allows
the call to the setup function to look very much like the eventual call to the target callback function.

In these methods, take care to not have other argument names that will “steal” the user’s callback’s arguments. When
sensible, prefix these “internal” argument names with an underscore. For example, RemoteReference.callRemote is
meant to be called like this:

myref.callRemote("addUser", "bob", "555-1212")

on the remote end, the following method is invoked:
def addUser(name, phone):

...

where “addUser” is the remote method name. The user might also choose to call it with named parameters like this:

myref.callRemote("addUser", name="bob", phone="555-1212")

In this case, callRemote (and any code that uses the **kwargs syntax) must be careful to not use “name” ,
“phone” , or any other name that might overlap with a user-provided named parameter. Therefore, callRemote is
implemented with the following signature:

316 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.addCallback.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.addCallback.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.base.ReactorBase.callLater.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.pb.RemoteReference.callRemote.html

Twisted Documentation, Release 16.0.0

class SomeClass(object):
def callRemote(self, _name, *args, **kw):

...

Do whatever you can to reduce user confusion. It may also be appropriate to assert that the kwargs dictionary does
not contain parameters with names that will eventually cause problems.

Special Methods

The augmented assignment protocol, defined by __iadd__ and other similarly named methods, can be used to allow
objects to be modified in place or to rebind names if an object is immutable – both through use of the same operator.
This can lead to confusing code, which in turn leads to buggy code. For this reason, methods of the augmented
assignment protocol should not be used in Twisted.

Functions

Functions should be named similarly to methods.

Functions or methods which are responding to events to complete a callback or errback should be named
_cbMethodName or _ebMethodName , in order to distinguish them from normal methods.

Attributes

Attributes should be named similarly to functions and methods. Attributes should be named descriptively; attribute
names like mode , type , and buf are generally discouraged. Instead, use displayMode , playerType , or
inputBuffer .

Do not use Python’s “private” attribute syntax; prefix non-public attributes with a single leading underscore. Since
several classes have the same name in Twisted, and they are distinguished by which package they come from, Python’s
double-underscore name mangling will not work reliably in some cases. Also, name-mangled private variables are
more difficult to address when unit testing or persisting a class.

An attribute (or function, method or class) should be considered private when one or more of the following conditions
are true:

• The attribute represents intermediate state which is not always kept up-to-date.

• Referring to the contents of the attribute or otherwise maintaining a reference to it may cause resources to leak.

• Assigning to the attribute will break internal assumptions.

• The attribute is part of a known-to-be-sub-optimal interface and will certainly be removed in a future release.

Python 3

Twisted is being ported to Python 3. Be sure to follow the guidelines for Python 3 compatibility. Check on them often
as they may change as lessons are learned during the porting effort.

Database

Database tables will be named with plural nouns.

Database columns will be named with underscores between words, all lower case, since most databases do not distin-
guish between case.

2.4. Development of Twisted 317

http://twistedmatrix.com/trac/wiki/Plan/Python3#Reviewerchecklist

Twisted Documentation, Release 16.0.0

Any attribute, method argument, or method name that corresponds directly to a column in the database will be named
exactly the same as that column, regardless of other coding conventions surrounding that circumstance.

All SQL keywords should be in upper case.

C Code

Wherever possible, C code should be optional, and the default python implementation should be maintained in tandem
with it. C code should be strict ANSI C, and must build using GCC as well as Visual Studio for Windows, and really
shouldn’t have any problems with other compilers either. Don’t do anything tricky.

C code should only be used for efficiency, not for binding to external libraries. If your particular code is not frequently
run, write it in Python. If you require the use of an external library, develop a separate, external bindings package and
make your twisted code depend on it.

Commit Messages

The commit messages are being distributed in a myriad of ways. Because of that, you need to observe a few simple
rules when writing a commit message.

The first line of the message is being used as both the subject of the commit email and the announcement on #twisted.
Therefore, it should be short (aim for < 80 characters) and descriptive – and must be able to stand alone (it is best
if it is a complete sentence). The rest of the e-mail should be separated with hard line breaks into short lines (< 70
characters). This is free-format, so you can do whatever you like here.

Commit messages should be about what , not how : we can get how from SVN diff. Explain reasons for commits, and
what they affect.

Each commit should be a single logical change, which is internally consistent. If you can’t summarize your changes
in one short line, this is probably a sign that they should be broken into multiple checkins.

Source Control

Twisted currently uses Subversion for source control. All development should occur using branches; when a task is
considered complete another Twisted developer may review it and if no problems are found, it may be merged into
trunk. The Twisted wiki has a start . Branches must be used for major development. Branches should be managed
using Combinator (but if you can manage them in some other way without anyone noticing, knock yourself out).

Certain features of Subversion should be avoided.

• Do not set the svn:ignore property on any file or directory. What you wish to ignore, others may wish to
examine. What others may wish you ignore, you may wish you examine. svn:ignore will affect everyone
who uses the repository, and so it is not the right mechanism to express personal preferences.

If you wish to ignore certain files use the global-ignores feature of ~/.subversion/config , for
example:

[miscellany]
global-ignores = dropin.cache *.pyc *.pyo *.o *.lo *.la #*# .*.rej *.rej .*~

Fallback

In case of conventions not enforced in this document, the reference documents to use in fallback is PEP 8 for Python
code and PEP 7 for C code. For example, the paragraph Whitespace in Expressions and Statements in PEP 8
describes what should be done in Twisted code.

318 Chapter 2. Twisted Core

http://twistedmatrix.com/trac/wiki/TwistedDevelopment
http://divmod.org/trac/wiki/DivmodCombinator
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0007/

Twisted Documentation, Release 16.0.0

Recommendations

These things aren’t necessarily standardizeable (in that code can’t be easily checked for compliance) but are a good
idea to keep in mind while working on Twisted.

If you’re going to work on a fragment of the Twisted codebase, please consider finding a way that you would use such
a fragment in daily life. Using a Twisted Web server on your website encourages you to actively maintain and improve
your code, as the little everyday issues with using it become apparent.

Twisted is a big codebase! If you’re refactoring something, please make sure to recursively grep for the names of
functions you’re changing. You may be surprised to learn where something is called. Especially if you are moving or
renaming a function, class, method, or module, make sure that it won’t instantly break other code.

Twisted Writing Standard

The Twisted writing standard describes the documentation writing styles we prefer in our documentation. This stan-
dard applies particularly to howtos and other descriptive documentation.

This document is meant to help Twisted documentation authors produce documentation that does not have the follow-
ing problems:

• misleads users about what is good Twisted style;

• misleads users into thinking that an advanced howto is an introduction to writing their first Twisted server; and

• misleads users about whether they fit the document’s target audience: for example, that they are able to use
enterprise without knowing how to write SQL queries.

General style

Documents should aim to be clear and concise, allowing the API documentation and the example code to tell as much
of the story as they can. Demonstrations and where necessary supported arguments should always preferred to simple
statements (“here is how you would simplify this code with Deferreds” rather than “Deferreds make code simpler”).

Documents should be clearly delineated into sections and subsections. Each of these sections, like the overall docu-
ment, should have a single clear purpose. This is most easily tested by trying to have meaningful headings: a section
which is headed by “More details” or “Advanced stuff” is not purposeful enough. There should be fairly obvious ways
to split a document. The two most common are task based sectioning and sectioning which follows module and class
separations.

Documentation must use American English spelling, and where possible avoid any local variants of either vocabulary
or grammar. Grammatically complex sentences should ideally be avoided: these make reading unnecessarily difficult,
particularly for non-native speakers.

When referring to a hypothetical person, (such as “a user of a website written with twisted.web”), gender neutral
pronouns (they/their/them) should be used.

For reStructuredText documents which are handled by the Sphinx documentation generator make lines short, and
break lines at natural places, such as after commas and semicolons, rather than after the 79th column. We call this
semantic newlines. This rule does not apply to docstrings.

1 Sometimes when editing a narrative documentation file, I wrap the lines semantically.
2 Instead of inserting a newline at 79 columns (or whatever),
3 or making paragraphs one long line,
4 I put in newlines at a point that seems logical to me.
5 Modern code-oriented text editors are very good at wrapping and arranging long lines.

2.4. Development of Twisted 319

Twisted Documentation, Release 16.0.0

Evangelism and usage documents

The Twisted documentation should maintain a reasonable distinction between “evangelism” documentation, which
compares the Twisted design or Twisted best practice with other approaches and argues for the Twisted approach,
and “usage” documentation, which describes the Twisted approach in detail without comparison to other possible
approaches.

While both kinds of documentation are useful, they have different audiences. The first kind of document, evangelical
documents, is useful to a reader who is researching and comparing approaches and seeking to understand the Twisted
approach or Twisted functionality in order to decide whether it is useful to them. The second kind of document, usage
documents, are useful to a reader who has decided to use Twisted and simply wants further information about available
functions and architectures they can use to accomplish their goal.

Since they have distinct audiences, evangelism and detailed usage documentation belongs in separate files. There
should be links between them in ‘Further reading’ or similar sections.

Descriptions of features

Descriptions of any feature added since release 2.0 of Twisted core must have a note describing which release of which
Twisted project they were added in at the first mention in each document. If they are not yet released, give them the
number of the next minor release.

For example, a substantial change might have a version number added in the introduction:

This document describes the Application infrastructure for deploying Twisted applications (added in
Twisted 1.3) .

The version does not need to be mentioned elsewhere in the document except for specific features which were added
in subsequent releases, which might should be mentioned separately.

The simplest way to create a .tac file, SuperTac (added in Twisted Core 99.7) ...

In the case where the usage of a feature has substantially changed, the number should be that of the release in which
the current usage became available. For example:

This document describes the Application infrastructure for deploying Twisted applications (up-
dated[/substantially updated] in Twisted 2.7) .

Linking

The first occurrence of the name of any module, class or function should always link to the API documents. Subsequent
mentions may or may not link at the author’s discretion: discussions which are very closely bound to a particular API
should probably link in the first mention in the given section.

Links between howtos are encouraged. Overview documents and tutorials should always link to reference documents
and in depth documents. These documents should link among themselves wherever it’s needed: if you’re tempted to
re-describe the functionality of another module, you should certainly link instead.

Linking to standard library documentation is also encouraged when referencing standard library objects. Intersphinx
is supported in Twisted documentation, with prefixes for linking to either the Python 2 standard library documentation
(via py2) or Python 3 (via py3) as needed.

Introductions

The introductory section of a Twisted howto should immediately follow the top-level heading and precede any sub-
headings.

320 Chapter 2. Twisted Core

http://sphinx-doc.org/ext/intersphinx.html

Twisted Documentation, Release 16.0.0

The following items should be present in the introduction to Twisted howtos: the introductory paragraph and the
description of the target audience.

Introductory paragraph The introductory paragraph of a document should summarize what the document is de-
signed to present. It should use the both proper names for the Twisted technologies and simple non-Twisted descrip-
tions of the technologies. For example, in this paragraph both the name of the technology (“Conch”) and a description
(“SSH server”) are used:

This document describes setting up a SSH server to serve data from the file system using Conch, the
Twisted SSH implementation.

The introductory paragraph should be relatively short, but should, like the above, somewhere define the document’s
objective: what the reader should be able to do using instructions in the document.

Description of target audience Subsequent paragraphs in the introduction should describe the target audience of
the document: who would want to read it, and what they should know before they can expect to use your document.
For example:

The target audience of this document is a Twisted user who has a set of filesystem like data objects that
they would like to make available to authenticated users over SFTP.

Following the directions in this document will require that you are familiar with managing authentication
via the Twisted Cred system.

Use your discretion about the extent to which you list assumed knowledge. Very introductory documents that are
going to be among a reader’s first exposure to Twisted will even need to specify that they rely on knowledge of Python
and of certain networking concepts (ports, servers, clients, connections) but documents that are going to be sought out
by existing Twisted users for particular purposes only need to specify other Twisted knowledge that is assumed.

Any knowledge of technologies that wouldn’t be considered “core Python” and/or “simple networking” need to be
explicitly specified, no matter how obvious they seem to someone familiar with the technology. For example, it needs
to be stated that someone using enterprise should know SQL and should know how to set up and populate databases
for testing purposes.

Where possible, link to other documents that will fill in missing knowledge for the reader. Linking to documents in
the Twisted repository is preferred but not essential.

Goals of document The introduction should finish with a list of tasks that the user can expect to see the document ac-
complish. These tasks should be concrete rather than abstract, so rather than telling the user that they will “understand
Twisted Conch”, you would list the specific tasks that they will see the document do. For example:

This document will demonstrate the following tasks using Twisted Conch:

• creating an anonymous access read-only SFTP server using a filesystem backend;

• creating an anonymous access read-only SFTP server using a proxy backend connecting to an HTTP
server; and

• creating a anonymous access read and write SFTP server using a filesystem backend.

In many cases this will essentially be a list of your code examples, but it need not be. If large sections of your code
are devoted to design discussions, your goals might resemble the following:

This document will discuss the following design aspects of writing Conch servers:

• authentication of users; and

• choice of data backends.

2.4. Development of Twisted 321

Twisted Documentation, Release 16.0.0

Example code

Wherever possible, example code should be provided to illustrate a certain technique or piece of functionality.

Example code should try and meet as many of the following requirements as possible:

• example code should be a complete working example suitable for copying and pasting and running by the reader
(where possible, provide a link to a file to download);

• example code should be short;

• example code should be commented very extensively, with the assumption that this code may be read by a
Twisted newcomer;

• example code should conform to the coding standard ; and

• example code should exhibit ‘best practice’, not only for dealing with the target functionality, but also for use
of the application framework and so on.

The requirement to have a complete working example will occasionally impose upon authors the need to have a few
dummy functions: in Twisted documentation the most common example is where a function is needed to generate a
Deferred and fire it after some time has passed. An example might be this, where deferLater is used to fire a callback
after a period of time:

from twisted.internet import task, reactor

def getDummyDeferred():
"""
Dummy method which returns a deferred that will fire in 5 seconds with
a result
"""
return task.deferLater(reactor, 5, lambda x: "RESULT")

As in the above example, it is imperative to clearly mark that the function is a dummy in as many ways as you can:
using Dummy in the function name, explaining that it is a dummy in the docstring, and marking particular lines as
being required to create an effect for the purposes of demonstration. In most cases, this will save the reader from
mistaking this dummy method for an idiom they should use in their Twisted code.

Conclusions

The conclusion of a howto should follow the very last section heading in a file. This heading would usually be called
“Conclusion”.

The conclusion of a howto should remind the reader of the tasks that they have done while reading the document. For
example:

In this document, you have seen how to:

1. set up an anonymous read-only SFTP server;

2. set up a SFTP server where users authenticate;

3. set up a SFTP server where users are restricted to some parts of the filesystem based on authentica-
tion; and

4. set up a SFTP server where users have write access to some parts of the filesystem based on authen-
tication.

If appropriate, the howto could follow this description with links to other documents that might be of interest to the
reader with their newfound knowledge. However, these links should be limited to fairly obvious extensions of at least
one of the listed tasks.

322 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.task.deferLater.html

Twisted Documentation, Release 16.0.0

Unit Tests in Twisted

Each unit test tests one bit of functionality in the software. Unit tests are entirely automated and complete quickly.
Unit tests for the entire system are gathered into one test suite, and may all be run in a single batch. The result of a
unit test is simple: either it passes, or it doesn’t. All this means you can test the entire system at any time without
inconvenience, and quickly see what passes and what fails.

Unit Tests in the Twisted Philosophy

The Twisted development team adheres to the practice of Extreme Programming (XP), and the usage of unit tests is a
cornerstone XP practice. Unit tests are a tool to give you increased confidence. You changed an algorithm – did you
break something? Run the unit tests. If a test fails, you know where to look, because each test covers only a small
amount of code, and you know it has something to do with the changes you just made. If all the tests pass, you’re good
to go, and you don’t need to second-guess yourself or worry that you just accidentally broke someone else’s program.

What to Test, What Not to Test

You don’t have to write a test for every single method you write, only production methods that could
possibly break.

– Kent Beck, Extreme Programming Explained

Running the Tests

How From the root of the Twisted source tree, run Trial :

$ bin/trial twisted

You’ll find that having something like this in your emacs init files is quite handy:

(defun runtests () (interactive)
(compile "python /somepath/Twisted/bin/trial /somepath/Twisted"))

(global-set-key [(alt t)] 'runtests)

When Always, always, always be sure all the tests pass before committing any code. If someone else checks out
code at the start of a development session and finds failing tests, they will not be happy and may decide to hunt you
down .

Since this is a geographically dispersed team, the person who can help you get your code working probably isn’t in
the room with you. You may want to share your work in progress over the network, but you want to leave the main
Subversion tree in good working order. So use a branch , and merge your changes back in only after your problem is
solved and all the unit tests pass again.

Adding a Test

Please don’t add new modules to Twisted without adding tests for them too. Otherwise we could change something
which breaks your module and not find out until later, making it hard to know exactly what the change that broke it
was, or until after a release, and nobody wants broken code in a release.

2.4. Development of Twisted 323

http://c2.com/cgi/wiki?ExtremeProgramming
http://twistedmatrix.com/trac/wiki/TwistedTrial
http://www.xprogramming.com/xpmag/expUnitTestsAt100.htm
http://svnbook.red-bean.com/en/1.0/ch04.html

Twisted Documentation, Release 16.0.0

Tests go into dedicated test packages such as twisted/test/ or twisted/conch/test/ , and are named
test_foo.py , where foo is the name of the module or package being tested. Extensive documentation on using
the PyUnit framework for writing unit tests can be found in the links section below.

One deviation from the standard PyUnit documentation: To ensure that any variations in test results are due to vari-
ations in the code or environment and not the test process itself, Twisted ships with its own, compatible, testing
framework. That just means that when you import the unittest module, you will from twisted.trial import
unittest instead of the standard import unittest .

As long as you have followed the module naming and placement conventions, trial will be smart enough to pick up
any new tests you write.

PyUnit provides a large number of assertion methods to be used when writing tests. Many of these are redundant. For
consistency, Twisted unit tests should use the assert forms rather than the fail forms. Also, use assertEqual
, assertNotEqual , and assertAlmostEqual rather than assertEquals , assertNotEquals , and
assertAlmostEquals . assertTrue is also preferred over assert_ . You may notice this convention is not
followed everywhere in the Twisted codebase. If you are changing some test code and notice the wrong method being
used in nearby code, feel free to adjust it.

When you add a unit test, make sure all methods have docstrings specifying at a high level the intent of the test. That
is, a description that users of the method would understand.

Test Implementation Guidelines

Here are some guidelines to follow when writing tests for the Twisted test suite. Many tests predate these guidelines
and so do not follow them. When in doubt, follow the guidelines given here, not the example of old unit tests.

Naming Test Classes When writing tests for the Twisted test suite, test classes are named FooTests, where Foo
is the name of the component being tested. Here is an example:

class SSHClientTests(unittest.TestCase):
def test_sshClient(self):

foo() # the actual test

Real I/O Most unit tests should avoid performing real, platform-implemented I/O operations. Real I/O is slow,
unreliable, and unwieldy.

When implementing a protocol, twisted.test.proto_helpers.StringTransport can be used instead of a real TCP transport.
StringTransport is fast, deterministic, and can easily be used to exercise all possible network behaviors.

If you need pair a client to a server and have them talk to each other, use twisted.test.iosim.connect with
twisted.test.iosim.FakeTransport transports.

Real Time Most unit tests should also avoid waiting for real time to pass. Unit tests which construct and advance a
twisted.internet.task.Clock are fast and deterministic.

When designing your code allow for the reactor to be injected during tests.

from twisted.internet.task import Clock

def test_timeBasedFeature(self):
"""
In this test a Clock scheduler is used.
"""
clock = Clock()
yourThing = SomeThing()

324 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.0.0/api/twisted.test.proto_helpers.StringTransport.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.test.iosim.connect.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.test.iosim.FakeTransport.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.task.Clock.html

Twisted Documentation, Release 16.0.0

yourThing._reactor = clock

state = yourThing.getState()

clock.advance(10)

Get state after 10 seconds.
state = yourThing.getState()

Test Data Keeping test data in the source tree should be avoided where possible.

In some cases it can not be avoided, but where it’s obvious how to do so, do it. Test data can be generated at run time
or stored inside the test modules as constants.

When file system access is required, dumping data into a temporary path during the test run opens up more testing
opportunities. Inside the temporary path you can control various path properties or permissions.

You should design your code so that data can be read from arbitrary input streams.

Tests should be able to run even if they are run inside an installed copy of Twisted.

publicRSA_openssh = ("ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAGEArzJx8OYOnJmzf4tf"
"vLi8DVPrJ3/c9k2I/Az64fxjHf9imyRJbixtQhlH9lfNjUIx+4LmrJH5QNRsFporcHDKOTwTT"
"h5KmRpslkYHRivcJSkbh/C+BR3utDS555mV comment")

def test_loadOpenSSHRSAPublic(self):
"""
L{keys.Key.fromStrea} can load RSA keys serialized in OpenSSH format.
"""
keys.Key.fromStream(StringIO(publicRSA_openssh))

The Global Reactor Since unit tests are avoiding real I/O and real time, they can usually avoid using a real reactor.
The only exceptions to this are unit tests for a real reactor implementation. Unit tests for protocol implementations or
other application code should not use a reactor. Unit tests for real reactor implementations should not use the global
reactor, but should instead use twisted.internet.test.reactormixins.ReactorBuilder so they can be applied to all of the
reactor implementations automatically. In no case should new unit tests use the global reactor.

Skipping Tests

Trial, the Twisted unit test framework, has some extensions which are designed to encourage developers to add new
tests. One common situation is that a test exercises some optional functionality: maybe it depends upon certain
external libraries being available, maybe it only works on certain operating systems. The important common factor is
that nobody considers these limitations to be a bug.

To make it easy to test as much as possible, some tests may be skipped in certain situations. Individual test cases can
raise the SkipTest exception to indicate that they should be skipped, and the remainder of the test is not run. In
the summary (the very last thing printed, at the bottom of the test output) the test is counted as a”skip” instead of a
“success” or “fail” . This should be used inside a conditional which looks for the necessary prerequisites:

class SSHClientTests(unittest.TestCase):
def test_sshClient(self):

if not ssh_path:
raise unittest.SkipTest("cannot find ssh, nothing to test")

foo() # do actual test after the SkipTest

2.4. Development of Twisted 325

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.test.reactormixins.ReactorBuilder.html

Twisted Documentation, Release 16.0.0

You can also set the .skip attribute on the method, with a string to indicate why the test is being skipped. This
is convenient for temporarily turning off a test case, but it can also be set conditionally (by manipulating the class
attributes after they’ve been defined):

class SomeThingTests(unittest.TestCase):
def test_thing(self):

dotest()
test_thing.skip = "disabled locally"

class MyTests(unittest.TestCase):
def test_one(self):

...
def test_thing(self):

dotest()

if not haveThing:
MyTests.test_thing.im_func.skip = "cannot test without Thing"
but test_one() will still run

Finally, you can turn off an entire TestCase at once by setting the .skip attribute on the class. If you organize your tests
by the functionality they depend upon, this is a convenient way to disable just the tests which cannot be run.

class TCPTests(unittest.TestCase):
...

class SSLTests(unittest.TestCase):
if not haveSSL:

skip = "cannot test without SSL support"
but TCPTests will still run
...

Testing New Functionality

Two good practices which arise from the “XP” development process are sometimes at odds with each other:

• Unit tests are a good thing. Good developers recoil in horror when they see a failing unit test. They should drop
everything until the test has been fixed.

• Good developers write the unit tests first. Once tests are done, they write implementation code until the unit
tests pass. Then they stop.

These two goals will sometimes conflict. The unit tests that are written first, before any implementation has been done,
are certain to fail. We want developers to commit their code frequently, for reliability and to improve coordination
between multiple people working on the same problem together. While the code is being written, other developers
(those not involved in the new feature) should not have to pay attention to failures in the new code. We should not
dilute our well-indoctrinated Failing Test Horror Syndrome by crying wolf when an incomplete module has not yet
started passing its unit tests. To do so would either teach the module author to put off writing or committing their unit
tests until after all the functionality is working, or it would teach the other developers to ignore failing test cases. Both
are bad things.

”.todo” is intended to solve this problem. When a developer first starts writing the unit tests for functionality that
has not yet been implemented, they can set the .todo attribute on the test methods that are expected to fail. These
methods will still be run, but their failure will not be counted the same as normal failures: they will go into an “expected
failures” category. Developers should learn to treat this category as a second-priority queue, behind actual test failures.

As the developer implements the feature, the tests will eventually start passing. This is surprising: after all those
tests are marked as being expected to fail. The .todo tests which nevertheless pass are put into a”unexpected success”
category. The developer should remove the .todo tag from these tests. At that point, they become normal tests, and
their failure is once again cause for immediate action by the entire development team.

326 Chapter 2. Twisted Core

Twisted Documentation, Release 16.0.0

The life cycle of a test is thus:

1. Test is created, marked .todo . Test fails: “expected failure” .

2. Code is written, test starts to pass. “unexpected success” .

3. .todo tag is removed. Test passes. “success” .

4. Code is broken, test starts to fail. “failure” . Developers spring into action.

5. Code is fixed, test passes once more. “success” .

.todomay be of use while you are developing a feature, but by the time you are ready to commit anything all the tests
you have written should be passing. In other words never commit to trunk tests marked as .todo. For unfinished
tests you should create a follow up ticket and add the tests to the ticket’s description.

You can also ignore the .todo marker and just make sure you write test first to see them failing before starting to
work on the fix.

Line Coverage Information

Trial provides line coverage information, which is very useful to ensure old code has decent coverage. Passing the
--coverage option to Trial will generate the coverage information in a file called coverage which can be found
in the _trial_temp folder.

Associating Test Cases With Source Files

Please add a test-case-name tag to the source file that is covered by your new test. This is a comment at the
beginning of the file which looks like one of the following:

-*- test-case-name: twisted.test.test_defer -*-

or

#!/usr/bin/env python
-*- test-case-name: twisted.test.test_defer -*-

This format is understood by emacs to mark “File Variables” . The intention is to accept test-case-name any-
where emacs would on the first or second line of the file (but not in the File Variables: block that emacs
accepts at the end of the file). If you need to define other emacs file variables, you can either put them in the File
Variables: block or use a semicolon-separated list of variable definitions:

-*- test-case-name: twisted.test.test_defer; fill-column: 75; -*-

If the code is exercised by multiple test cases, those may be marked by using a comma-separated list of tests, as
follows: (NOTE: not all tools can handle this yet.. trial --testmodule does, though)

-*- test-case-name: twisted.test.test_defer,twisted.test.test_tcp -*-

The test-case-name tag will allow trial --testmodule twisted/dir/myfile.py to determine
which test cases need to be run to exercise the code in myfile.py . Several tools (as well as
http://launchpad.net/twisted-emacs’s twisted-dev.el ‘s F9 command) use this to automatically run the right tests.

Links

• A chapter on Unit Testing in Mark Pilgrim’s Dive Into Python .

• unittest module documentation, in the Python Library Reference .

2.4. Development of Twisted 327

http://launchpad.net/twisted-emacs's
http://www.diveintopython3.net/unit-testing.html
http://www.diveintopython3.net/
http://docs.python.org/library/unittest.html
http://docs.python.org/library

Twisted Documentation, Release 16.0.0

• UnitTest on the PortlandPatternRepository Wiki , where all the cool ExtremeProgramming kids hang out.

• Unit Tests in Extreme Programming: A Gentle Introduction .

• Ron Jeffries expounds on the importance of Unit Tests at 100% .

• Ron Jeffries writes about the Unit Test in the Extreme Programming practices of C3 .

• PyUnit’s homepage .

• The top-level tests directory, twisted/test , in Subversion.

See also Tips for writing tests for Twisted code .

Working from Twisted’s Subversion repository

If you’re going to be doing development on Twisted itself, or if you want to take advantage of bleeding-edge features
(or bug fixes) that are not yet available in a numbered release, you’ll probably want to check out a tree from the Twisted
Subversion repository. The Trunk is where all current development takes place.

This document lists some useful tips for working on this cutting edge.

Checkout

Subversion tutorials can be found elsewhere, see in particular the Subversion homepage . The relevant data you need
to check out a copy of the Twisted tree is available on the development page , and is as follows:

$ svn co svn://svn.twistedmatrix.com/svn/Twisted/trunk Twisted

Alternate tree names

By using svn co svn://svn.twistedmatrix.com/svn/Twisted/trunk otherdir , you can put the
workspace tree in a directory other than “Twisted” . I do this (with a name like “Twisted-Subversion”) to remind
myself that this tree comes from Subversion and not from a released version (like “Twisted-1.0.5”). This practice can
cause a few problems, because there are a few places in the Twisted tree that need to know where the tree starts, so
they can add it to sys.path without requiring the user manually set their PYTHONPATH. These functions walk the
current directory up to the root, looking for a directory named “Twisted” (sometimes exactly that, sometimes with a
.startswith test). Generally these are test scripts or other administrative tools which expect to be launched from
somewhere inside the tree (but not necessarily from the top).

If you rename the tree to something other than Twisted , these tools may wind up trying to use Twisted source files
from /usr/lib/python2.5 or elsewhere on the default sys.path . Normally this won’t matter, but it is good to be aware
of the issue in case you run into problems.

twisted/test/process_twisted.py is one of these programs.

Combinator

In order to simplify the use of Subversion, we typically use Divmod Combinator . You may find it to be useful, too. In
particular, because Twisted uses branches for almost all feature development, if you plan to contribute to Twisted you
will probably find Combinator very useful. For more details, see the Combinator website, as well as the UQDS page.

328 Chapter 2. Twisted Core

http://c2.com/cgi/wiki?UnitTest
http://c2.com/cgi/wiki
http://c2.com/cgi/wiki?ExtremeProgramming
http://www.extremeprogramming.org/rules/unittests.html
http://www.extremeprogramming.org
http://www.xprogramming.com/xpmag/expUnitTestsAt100.htm
http://www.xprogramming.com/Practices/PracUnitTest.html
http://www.xprogramming.com/Practices/xpractices.htm
http://pyunit.sourceforge.net
http://twistedmatrix.com/trac/browser/trunk/twisted/test
http://subversion.apache.org/
http://twistedmatrix.com/trac/wiki/TwistedDevelopment
http://twistedmatrix.com/trac/wiki/Combinator
http://twistedmatrix.com/trac/wiki/UltimateQualityDevelopmentSystem

Twisted Documentation, Release 16.0.0

Compiling C extensions

There are currently several C extension modules in Twisted: twisted.internet.cfsupport ,
twisted.internet.iocpreactor._iocp , and twisted.python._epoll . These modules are op-
tional, but you’ll have to compile them if you want to experience their features, performance improvements, or bugs.
There are two approaches.

The first is to do a regular distutils ./setup.py build , which will create a directory under build/ to hold
both the generated .so files as well as a copy of the 600-odd .py files that make up Twisted. If you do this, you
will need to set your PYTHONPATH to something like MyDir/Twisted/build/lib.linux-i686-2.5 in
order to run code against the Subversion twisted (as opposed to whatever’s installed in /usr/lib/python2.5 or
wherever python usually looks). In addition, you will need to re-run the build command every time you change a
.py file. The build/lib.foo directory is a copy of the main tree, and that copy is only updated when you re-run
setup.py build . It is easy to forget this and then wonder why your code changes aren’t being expressed.

The second technique is to build the C modules in place, and point your PYTHONPATH at the top of the tree, like
MyDir/Twisted . This way you’re using the .py files in place too, removing the confusion a forgotten rebuild could
cause with the separate build/ directory above. To build the C modules in place, do ./setup.py build_ext -i
. You only need to re-run this command when you change the C files. Note that setup.py is not Make, it does
not always get the dependencies right (.h files in particular), so if you are hacking on the cReactor you may need to
manually delete the .o files before doing a rebuild. Also note that doing a setup.py clean will remove the .o
files but not the final .so files, they must be deleted by hand.

Running tests

To run the full unit-test suite, do:

./bin/trial twisted

To run a single test file (like twisted/test/test_defer.py), do one of:

./bin/trial twisted.test.test_defer

or

./bin/trial twisted/test/test_defer.py

To run any tests that are related to a code file, like twisted/protocols/imap4.py , do:

./bin/trial --testmodule twisted/mail/imap4.py

This depends upon the .py file having an appropriate “test-case-name” tag that indicates which test cases pro-
vide coverage. See the Test Standards document for details about using “test-case-name” . In this example, the
twisted.mail.test.test_imap test will be run.

Many tests create temporary files in /tmp or ./_trial_temp, but everything in /tmp should be deleted when the test
finishes. Sometimes these cleanup calls are commented out by mistake, so if you see a stray /tmp/@12345.1
directory, it is probably from test_dirdbm or test_popsicle . Look for an rmtree that has been commented
out and complain to the last developer who touched that file.

Building docs

Twisted documentation (not including the automatically-generated API docs) is generated by Sphinx . The docs are
written in Restructured Text (.rst) and translated into .html files by the bin/admin/build-docs script.

To build the HTML form of the docs into the doc/ directory, do the following:

2.4. Development of Twisted 329

http://sphinx-doc.org/

Twisted Documentation, Release 16.0.0

./bin/admin/build-docs .

Committing and Post-commit Hooks

Twisted uses a customized trac-post-commit-hook to enable ticket updates based on svn commit logs. When making a
branch for a ticket, the branch name should end in -<ticket number> , for example my-branch-9999 . This
will add a ticket comment containing a changeset link and branch name. To make your commit message show up as
a comment on a Trac ticket, add a refs #<ticket number> line at the bottom of your commit message. To
automatically close a ticket on Trac as Fixed and add a comment with the closing commit message, add a Fixes:
#<ticket number> line to your commit message. In general, a commit message closing a ticket looks like this:

Merge my-branch-9999: A single-line summary.

Author: jesstess
Reviewers: exarkun, glyph
Fixes: #9999

My longer description of the changes made.

The Twisted Coding Standard elaborates on commit messages and source control.

Emacs

A minor mode for development with Twisted using Emacs is available. See twisted-dev.el , provided by twisted-
emacs , for several utility functions which make it easier to grep for methods, run test cases, etc.

Building Debian packages

Our support for building Debian packages has fallen into disrepair. We would very much like to restore this function-
ality, but until we do so, if you are interested in this, you are on your own. See stdeb for one possible approach to
this.

This series of documents is designed for people who wish to contribute to the Twisted codebase.

• Coding standard

• Documentation writing standard

• Testing standard

• Working from Twisted’s Subversion repository

This documentation is for people who work on the Twisted codebase itself, rather than for people who want to use
Twisted in their own projects.

• Naming

• Philosophy

• Security

• Twisted development policy

• Developer guides : documentation on using Twisted Core to develop your own applications

• Examples : short code examples using Twisted Core

• Specifications : specification documents for elements of Twisted Core

330 Chapter 2. Twisted Core

http://bazaar.launchpad.net/~exarkun/twisted-trac-integration/trunk/annotate/head%3A/trac-hooks/trac-post-commit-hook
http://launchpad.net/twisted-emacs
http://launchpad.net/twisted-emacs
http://github.com/astraw/stdeb

Twisted Documentation, Release 16.0.0

• Development of Twisted : for people who want to work on Twisted itself

An API reference is available on the twistedmatrix web site.

2.4. Development of Twisted 331

Twisted Documentation, Release 16.0.0

332 Chapter 2. Twisted Core

CHAPTER 3

Twisted Conch

3.1 Developer Guides

3.1.1 Writing a client with Twisted Conch

Introduction

In the original days of computing, rsh/rlogin were used to connect to remote computers and execute commands. These
commands had the problem that the passwords and commands were sent in the clear. To solve this problem, the SSH
protocol was created. Twisted Conch implements the second version of this protocol.

Using an SSH Command Endpoint

If your objective is to execute a command on a remote host over an SSH connection, then the easiest approach may be
to use twisted.conch.endpoints.SSHCommandClientEndpoint . If you haven’t used endpoints before, first take a look
at the endpoint howto to get an idea of how endpoints work in general.

Conch provides an endpoint implementation which establishes an SSH connection, performs necessary authentication,
opens a channel, and launches a command in that channel. It then associates the output of that command with the input
of a protocol you supply, and associates output from that protocol with the input of that command. Effectively, this
lets you ignore most of the complexity of SSH and just interact with a remote process as though it were any other
stream-oriented connection - such as TCP or SSL.

Conch also provides an endpoint that is initialized with an already established SSH connection. This endpoint just
opens a new channel on the existing connection and launches a command in that.

Using the SSHCommandClientEndpoint is about as simple as using any other stream-oriented client endpoint.
Just create the endpoint defining where the SSH server to connect to is and a factory defining what kind of protocol to
use to interact with the command and let them get to work using the endpoint’s connect method.

echoclient_ssh.py

#!/usr/bin/env python
Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

if __name__ == '__main__':
import sys
import echoclient_ssh
from twisted.internet.task import react
react(echoclient_ssh.main, sys.argv[1:])

333

https://twistedmatrix.com/documents/16.0.0/api/twisted.conch.endpoints.SSHCommandClientEndpoint.html

Twisted Documentation, Release 16.0.0

import os, getpass

from twisted.python.filepath import FilePath
from twisted.python.usage import Options
from twisted.internet.defer import Deferred
from twisted.internet.protocol import Factory, Protocol
from twisted.internet.endpoints import UNIXClientEndpoint
from twisted.conch.ssh.keys import EncryptedKeyError, Key
from twisted.conch.client.knownhosts import KnownHostsFile
from twisted.conch.endpoints import SSHCommandClientEndpoint

class EchoOptions(Options):
optParameters = [

("host", "h", "localhost",
"hostname of the SSH server to which to connect"),
("port", "p", 22,
"port number of SSH server to which to connect", int),
("username", "u", getpass.getuser(),
"username with which to authenticate with the SSH server"),
("identity", "i", None,
"file from which to read a private key to use for authentication"),
("password", None, None,
"password to use for authentication"),
("knownhosts", "k", "~/.ssh/known_hosts",
"file containing known ssh server public key data"),
]

optFlags = [
["no-agent", None, "Disable use of key agent"],
]

class NoiseProtocol(Protocol):
def connectionMade(self):

self.finished = Deferred()
self.strings = ["bif", "pow", "zot"]
self.sendNoise()

def sendNoise(self):
if self.strings:

self.transport.write(self.strings.pop(0) + "\n")
else:

self.transport.loseConnection()

def dataReceived(self, data):
print "Server says:", data
self.sendNoise()

def connectionLost(self, reason):
self.finished.callback(None)

334 Chapter 3. Twisted Conch

Twisted Documentation, Release 16.0.0

def readKey(path):
try:

return Key.fromFile(path)
except EncryptedKeyError:

passphrase = getpass.getpass("%r keyphrase: " % (path,))
return Key.fromFile(path, passphrase=passphrase)

class ConnectionParameters(object):
def __init__(self, reactor, host, port, username, password, keys,

knownHosts, agent):
self.reactor = reactor
self.host = host
self.port = port
self.username = username
self.password = password
self.keys = keys
self.knownHosts = knownHosts
self.agent = agent

@classmethod
def fromCommandLine(cls, reactor, argv):

config = EchoOptions()
config.parseOptions(argv)

keys = []
if config["identity"]:

keyPath = os.path.expanduser(config["identity"])
if os.path.exists(keyPath):

keys.append(readKey(keyPath))

knownHostsPath = FilePath(os.path.expanduser(config["knownhosts"]))
if knownHostsPath.exists():

knownHosts = KnownHostsFile.fromPath(knownHostsPath)
else:

knownHosts = None

if config["no-agent"] or "SSH_AUTH_SOCK" not in os.environ:
agentEndpoint = None

else:
agentEndpoint = UNIXClientEndpoint(

reactor, os.environ["SSH_AUTH_SOCK"])

return cls(
reactor, config["host"], config["port"],
config["username"], config["password"], keys,
knownHosts, agentEndpoint)

def endpointForCommand(self, command):
return SSHCommandClientEndpoint.newConnection(

self.reactor, command, self.username, self.host,
port=self.port, keys=self.keys, password=self.password,
agentEndpoint=self.agent, knownHosts=self.knownHosts)

3.1. Developer Guides 335

Twisted Documentation, Release 16.0.0

def main(reactor, *argv):
parameters = ConnectionParameters.fromCommandLine(reactor, argv)
endpoint = parameters.endpointForCommand(b"/bin/cat")

factory = Factory()
factory.protocol = NoiseProtocol

d = endpoint.connect(factory)
d.addCallback(lambda proto: proto.finished)
return d

For completeness, this example includes a lot of code to support different styles of authentication, reading (and pos-
sibly updating) existing known_hosts files, and parsing command line options. Focus on the latter half of the main
function to see the code that is most directly responsible for actually doing the necessary SSH connection setup.
SSHCommandClientEndpoint accepts quite a few options, since there is a lot of flexibility in SSH and many
possible different server configurations, but once the endpoint object itself is created, its use is no more complicated
than the use of any other endpoint: pass a factory to its connect method and attach a callback to the resulting
Deferred to do something with the protocol instance. If you use an endpoint that creates new connections, the
connection attempt can be cancelled by calling cancel() on this Deferred .

In this case, the connected protocol instance is only used to make the example wait until the client has finished talking
to the server, which happens after the small amount of example data has been sent to the server and bounced back by
the /bin/cat process the protocol is interacting with.

Several of the options accepted by SSHCommandClientEndpoint.newConnection should be easy to under-
stand. The endpoint takes a reactor which it uses to do any and all I/O it needs to do. It also takes a command which
it executes on the remote server once the SSH connection is established and authenticated; this command is a single
string, perhaps including spaces or other special shell symbols, and is interpreted by a shell on the server. It takes a
username with which it identifies itself to the server for authentication purposes. It takes an optional password argu-
ment which will also be used for authentication - if the server supports password authentication (prefer keys instead
where possible, see below). It takes a host (either a name or an IP address) and a port number, defining where to
connect.

Some of the other options may bear further explanation.

The keys argument gives any SSH Key objects which may be useful for authentication. These keys are available to
the endpoint for authentication, but only keys that the server indicates are useful will actually be used. This argument
is optional. If key authentication against the server is either unnecessary or undesired, it may be omitted entirely.

The agentEndpoint argument gives the SSHCommandClientEndpoint an opportunity to connect to an SSH
authentication agent. The agent may already be loaded with keys, or may have some other way to authenticate a
connection. Using the agent can mean the process actually establishing the SSH connection doesn’t need to load
any authentication material (passwords or keys) itself (often convenient in case keys are encrypted and potentially
more secure, since only the agent process ever actually holds the secrets). The value for this argument is another
IStreamClientEndpoint . Often in a typical NIX desktop environment, the *SSH_AUTH_SOCK environment
variable will give the location of a AF_UNIX socket. This explains the value echoclient_ssh.py assigns this
parameter when –no-agent is not given.

The knownHosts argument accepts a KnownHostsFile instance and controls how server keys are checked and stored.
This object has the opportunity to reject server keys if they differ from expectations. It can also save server keys when
they are first observed.

Finally, there is one option that is not demonstrated in the example - the ui argument. This argument is closely
related to the knownHosts argument described above. KnownHostsFile may require user-input under certain
circumstances - for example, to ask if it should accept a server key the first time it is observed. The ui object is how
this user-input is obtained. By default, a ConsoleUI instance associated with /dev/tty will be used. This gives about the
same behavior as is seen in a standard command-line ssh client. See SSHCommandClientEndpoint.newConnection
for details about how edge cases are handled for this default value. For use of SSHCommandClientEndpoint that

336 Chapter 3. Twisted Conch

https://twistedmatrix.com/documents/16.0.0/api/twisted.conch.ssh.keys.Key.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.conch.client.knownhosts.KnownHostsFile.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.conch.client.knownhosts.ConsoleUI.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.conch.endpoints.SSHCommandClientEndpoint.newConnection.html

Twisted Documentation, Release 16.0.0

is intended to be completely autonomous, applications will probably want to specify a custom ui object which can
make the necessary decisions without user-input.

It is also possible to run commands (one or more) over an already-established connection. This is done using the
alternate constructor SSHCommandClientEndpoint.existingConnection .

echoclient_shared_ssh.py

#!/usr/bin/env python
Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

if __name__ == '__main__':
import sys
import echoclient_shared_ssh
from twisted.internet.task import react
react(echoclient_shared_ssh.main, sys.argv[1:])

from twisted.internet.task import cooperate
from twisted.internet.defer import Deferred, gatherResults
from twisted.internet.protocol import Factory, Protocol

from twisted.conch.endpoints import SSHCommandClientEndpoint

from echoclient_ssh import ConnectionParameters

class PrinterProtocol(Protocol):
def dataReceived(self, data):

print "Got some data:", data,

def connectionLost(self, reason):
print "Lost my connection"
self.factory.done.callback(None)

def main(reactor, *argv):
parameters = ConnectionParameters.fromCommandLine(reactor, argv)
endpoint = parameters.endpointForCommand(b"/bin/cat")

done = []
factory = Factory()
factory.protocol = Protocol
d = endpoint.connect(factory)

def gotConnection(proto):
conn = proto.transport.conn

for i in range(50):
factory = Factory()
factory.protocol = PrinterProtocol
factory.done = Deferred()
done.append(factory.done)

e = SSHCommandClientEndpoint.existingConnection(
conn, b"/bin/echo %d" % (i,))

yield e.connect(factory)

3.1. Developer Guides 337

Twisted Documentation, Release 16.0.0

d.addCallback(gotConnection)
d.addCallback(lambda work: cooperate(work).whenDone())
d.addCallback(lambda ignored: gatherResults(done))

return d

Writing a client

In case the endpoint is missing some necessary functionality, or in case you want to interact with a different part of
an SSH server - such as one of its subsystems (for example, SFTP), you may need to use the lower-level Conch client
interface. This is described below.

Writing a client with Conch involves sub-classing 4 classes: twisted.conch.ssh.transport.SSHClientTransport
, twisted.conch.ssh.userauth.SSHUserAuthClient , twisted.conch.ssh.connection.SSHConnection , and
twisted.conch.ssh.channel.SSHChannel . We’ll start out with SSHClientTransport because it’s the base
of the client.

The Transport

from twisted.conch import error
from twisted.conch.ssh import transport
from twisted.internet import defer

class ClientTransport(transport.SSHClientTransport):

def verifyHostKey(self, pubKey, fingerprint):
if fingerprint != 'b1:94:6a:c9:24:92:d2:34:7c:62:35:b4:d2:61:11:84':

return defer.fail(error.ConchError('bad key'))
else:

return defer.succeed(1)

def connectionSecure(self):
self.requestService(ClientUserAuth('user', ClientConnection()))

See how easy it is? SSHClientTransport handles the negotiation of encryption and the verification of keys for
you. The one security element that you as a client writer need to implement is verifyHostKey() . This method is
called with two strings: the public key sent by the server and its fingerprint. You should verify the host key the server
sends, either by checking against a hard-coded value as in the example, or by asking the user. verifyHostKey
returns a twisted.internet.defer.Deferred which gets a callback if the host key is valid, or an errback if it is not. Note that
in the above, replace ‘user’ with the username you’re attempting to ssh with, for instance a call to os.getlogin()
for the current user.

The second method you need to implement is connectionSecure() . It is called when the encryption is set up
and other services can be run. The example requests that the ClientUserAuth service be started. This service will
be discussed next.

The Authorization Client

from twisted.conch.ssh import keys, userauth

these are the public/private keys from test_conch

publicKey = 'ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAGEArzJx8OYOnJmzf4tfBEvLi8DVPrJ3\

338 Chapter 3. Twisted Conch

https://twistedmatrix.com/documents/16.0.0/api/twisted.conch.ssh.transport.SSHClientTransport.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.conch.ssh.userauth.SSHUserAuthClient.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.conch.ssh.connection.SSHConnection.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.conch.ssh.channel.SSHChannel.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.html

Twisted Documentation, Release 16.0.0

/c9k2I/Az64fxjHf9imyRJbixtQhlH9lfNjUIx+4LmrJH5QNRsFporcHDKOTwTTYLh5KmRpslkYHR\
ivcJSkbh/C+BR3utDS555mV'

privateKey = """-----BEGIN RSA PRIVATE KEY-----
MIIByAIBAAJhAK8ycfDmDpyZs3+LXwRLy4vA1T6yd/3PZNiPwM+uH8Yx3/YpskSW
4sbUIZR/ZXzY1CMfuC5qyR+UDUbBaaK3Bwyjk8E02C4eSpkabJZGB0Yr3CUpG4fw
vgUd7rQ0ueeZlQIBIwJgbh+1VZfr7WftK5lu7MHtqE1S1vPWZQYE3+VUn8yJADyb
Z4fsZaCrzW9lkIqXkE3GIY+ojdhZhkO1gbG0118sIgphwSWKRxK0mvh6ERxKqIt1
xJEJO74EykXZV4oNJ8sjAjEA3J9r2ZghVhGN6V8DnQrTk24Td0E8hU8AcP0FVP+8
PQm/g/aXf2QQkQT+omdHVEJrAjEAy0pL0EBH6EVS98evDCBtQw22OZT52qXlAwZ2
gyTriKFVoqjeEjt3SZKKqXHSApP/AjBLpF99zcJJZRq2abgYlf9lv1chkrWqDHUu
DZttmYJeEfiFBBavVYIF1dOlZT0G8jMCMBc7sOSZodFnAiryP+Qg9otSBjJ3bQML
pSTqy7c3a2AScC/YyOwkDaICHnnD3XyjMwIxALRzl0tQEKMXs6hH8ToUdlLROCrP
EhQ0wahUTCk1gKA4uPD6TMTChavbh4K63OvbKg==
-----END RSA PRIVATE KEY-----"""

class ClientUserAuth(userauth.SSHUserAuthClient):

def getPassword(self, prompt = None):
return
this says we won't do password authentication

def getPublicKey(self):
return keys.Key.fromString(data = publicKey).blob()

def getPrivateKey(self):
return defer.succeed(keys.Key.fromString(data = privateKey).keyObject)

Again, fairly simple. The SSHUserAuthClient takes care of most of the work, but the actual authentication data
needs to be supplied. getPassword() asks for a password, getPublicKey() and getPrivateKey() get
public and private keys, respectively. getPassword() returns a Deferred that is called back with the password
to use.

getPublicKey() returns the SSH key data for the public key to use. twisted.conch.ssh.keys.Key.fromString() will
take a key in OpenSSH, LSH or any supported format, as a string, and generate a new twisted.conch.ssh.keys.Key.
Alternatively, keys.Key.fromFile() can be used instead, which will take the filename of a key in the supported
format, and and generate a new twisted.conch.ssh.keys.Key.

getPrivateKey() returns a Deferred which is called back with the private twisted.conch.ssh.keys.Key.

getPassword() and getPrivateKey() return Deferreds because they may need to ask the user for input.

Once the authentication is complete, SSHUserAuthClient takes care of starting the code SSHConnection
object given to it. Next, we’ll look at how to use the SSHConnection

The Connection

from twisted.conch.ssh import connection

class ClientConnection(connection.SSHConnection):

def serviceStarted(self):
self.openChannel(CatChannel(conn = self))

SSHConnection is the easiest, as it’s only responsible for starting the channels. It has other methods, those will be
examined when we look at SSHChannel .

3.1. Developer Guides 339

https://twistedmatrix.com/documents/16.0.0/api/Key.html
https://twistedmatrix.com/documents/16.0.0/api/Key.html
https://twistedmatrix.com/documents/16.0.0/api/Key.html
https://twistedmatrix.com/documents/16.0.0/api/Key.html

Twisted Documentation, Release 16.0.0

The Channel

from twisted.conch.ssh import channel, common

class CatChannel(channel.SSHChannel):

name = 'session'

def channelOpen(self, data):
d = self.conn.sendRequest(self, 'exec', common.NS('cat'),

wantReply = 1)
d.addCallback(self._cbSendRequest)
self.catData = ''

def _cbSendRequest(self, ignored):
self.write('This data will be echoed back to us by "cat."\r\n')
self.conn.sendEOF(self)
self.loseConnection()

def dataReceived(self, data):
self.catData += data

def closed(self):
print 'We got this from "cat":', self.catData

Now that we’ve spent all this time getting the server and client connected, here is where that work pays off.
SSHChannel is the interface between you and the other side. This particular channel opens a session and plays
with the ‘cat’ program, but your channel can implement anything, so long as the server supports it.

The channelOpen() method is where everything gets started. It gets passed a chunk of data; however, this chunk
is usually nothing and can be ignored. Our channelOpen() initializes our channel, and sends a request to the other
side, using the sendRequest() method of the SSHConnection object. Requests are used to send events to the
other side. We pass the method self so that it knows to send the request for this channel. The 2nd argument of ‘exec’
tells the server that we want to execute a command. The third argument is the data that accompanies the request.
common.NS encodes the data as a length-prefixed string, which is how the server expects the data. We also say that
we want a reply saying that the process has a been started. sendRequest() then returns a Deferred which we
add a callback for.

Once the callback fires, we send the data. SSHChannel supports the twisted.internet.interfaces.ITransport inter-
face, so it can be given to Protocols to run them over the secure connection. In our case, we just write the data
directly. sendEOF() does not follow the interface, but Conch uses it to tell the other side that we will write no
more data. loseConnection() shuts down our side of the connection, but we will still receive data through
dataReceived() . The closed() method is called when both sides of the connection are closed, and we use it
to display the data we received (which should be the same as the data we sent.)

Finally, let’s actually invoke the code we’ve set up.

The main() function

from twisted.internet import protocol, reactor

def main():
factory = protocol.ClientFactory()
factory.protocol = ClientTransport
reactor.connectTCP('localhost', 22, factory)
reactor.run()

340 Chapter 3. Twisted Conch

https://twistedmatrix.com/documents/16.0.0/api/twisted.conch.ssh.common.NS.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.ITransport.html

Twisted Documentation, Release 16.0.0

if __name__ == "__main__":
main()

We call connectTCP() to connect to localhost, port 22 (the standard port for ssh), and pass it an in-
stance of twisted.internet.protocol.ClientFactory . This instance has the attribute protocol set to our earlier
ClientTransport class. Note that the protocol attribute is set to the class ClientTransport , not an in-
stance of ClientTransport ! When the connectTCP call completes, the protocol will be called to create a
ClientTransport() object - this then invokes all our previous work.

It’s worth noting that in the example main() routine, the reactor.run() call never returns. If you want to make
the program exit, call reactor.stop() in the earlier closed() method.

If you wish to observe the interactions in more detail, adding a call to log.startLogging(sys.stdout,
setStdout=0) before the reactor.run() call will send all logging to stdout.

• Tutorial

– Writing an SSH client with Conch

3.2 Examples

3.2.1 Simple SSH server and client

• sshsimpleclient.py - simple SSH client

• sshsimpleserver.py - simple SSH server

3.2.2 Simple telnet server

• telnet_echo.tac - A telnet server which echoes data and events back to the client

3.2.3 twisted.conch.insults examples

• demo.tac - Nearly pointless demonstration of the manhole interactive interpreter

• demo_draw.tac - A trivial drawing application

• demo_insults.tac - Various simple terminal manipulations using the insults module

• demo_recvline.tac - Demonstrates line-at-a-time handling with basic line-editing support

• demo_scroll.tac - Simple echo-ish server that uses the scroll-region

• demo_manhole.tac - An interactive Python interpreter with syntax coloring

• window.tac - An example of various widgets

• Developer guides: documentation on using Twisted Conch to develop your own applications

• Examples: short code examples using Twisted Conch

3.2. Examples 341

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.protocol.ClientFactory.html

Twisted Documentation, Release 16.0.0

342 Chapter 3. Twisted Conch

CHAPTER 4

Twisted Mail

4.1 Examples

4.1.1 SMTP servers

• emailserver.tac - a toy email server.

4.1.2 SMTP clients

• sendmail_smtp.py - sending email over plain SMTP with the high-level sendmail client.

• sendmail_gmail.py - sending email encrypted ESMTP to GMail with the high-level sendmail client.

• sendmail_message.py - sending a complex message with the high-level sendmail client.

• smtpclient_simple.py - sending email using SMTP.

• smtpclient_tls.py - send email using authentication and transport layer security.

4.1.3 IMAP clients

• imap4client.py - Simple IMAP4 client which displays the subjects of all messages in a particular mailbox.

4.2 Developer Guides

4.2.1 Sending Mail

Twisted contains many ways of sending email, but the simplest is sendmail. Intended as a near drop-in replacement of
smtplib.SMTP‘s sendmail method, it provides the ability to send email over SMTP/ESMTP with minimal fuss
or configuration.

Knowledge of Twisted’s Deferreds is required for making full use of this document.

343

https://twistedmatrix.com/documents/16.0.0/api/twisted.mail.smtp.sendmail.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.mail.smtp.sendmail.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.mail.smtp.sendmail.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.mail.smtp.sendmail.html
http://docs.python.org/3.3/library/smtplib.html#smtplib.SMTP

Twisted Documentation, Release 16.0.0

Sending an Email over SMTP

Although insecure, some email systems still use plain SMTP for sending email. Plain SMTP has no authentication, no
transport security (emails are transmitted in plain text), and should not be done over untrusted networks.

sendmail‘s positional arguments are, in order:

• The SMTP/ESMTP server you are sending the message to

• The email address you are sending from

• A list of email addresses you are sending to

• The message.

The following example shows these in action.

sendmail_smtp.py

from __future__ import print_function

from twisted.mail.smtp import sendmail
from twisted.internet.task import react

def main(reactor):
d = sendmail("myinsecuremailserver.example.com",

"alice@example.com",
["bob@gmail.com", "charlie@gmail.com"],
"This is my super awesome email, sent with Twisted!")

d.addBoth(print)
return d

react(main)

Assuming that the values in it were replaced with real emails and a real SMTP server, it would send an email to the
two addresses specified and print the return status.

Sending an Email over ESMTP

Extended SMTP (ESMTP) is an improved version of SMTP, and is used by most modern mail servers. Unlike SMTP,
ESMTP supports authentication and transport security (emails are encrypted in transit). If you wish to send mail
through services like GMail/Google Apps or Outlook.com/Office 365, you will have to use ESMTP.

Using ESMTP requires more options – usually the default port of 25 is not open, so you must find out your email
provider’s TLS-enabled ESMTP port. It also allows the use of authentication via a username and password.

The following example shows part of the ESMTP functionality of sendmail.

sendmail_gmail.py

from __future__ import print_function

from twisted.mail.smtp import sendmail
from twisted.internet.task import react

def main(reactor):

d = sendmail("smtp.gmail.com",
"alice@gmail.com",
["bob@gmail.com", "charlie@gmail.com"],

344 Chapter 4. Twisted Mail

Twisted Documentation, Release 16.0.0

"This is my super awesome email, sent with Twisted!",
port=587, username="alice@gmail.com", password="*********")

d.addBoth(print)
return d

react(main)

Assuming you own the account alice@gmail.com, this would send an email to both bob@gmail.com and
charlie@gmail.com, and print out something like the following (formatted for clarity):

(2, [('bob@gmail.com', 250, '2.1.5 OK hz13sm11691456pac.6 - gsmtp'),
('charlie@gmail.com', 250, '2.1.5 OK hz13sm11691456pac.6 - gsmtp')])

sendmail returns a 2-tuple, containing the number of emails sent successfully (note that this is from you to the
server you specified, not to the recepient – emails may still be lost between that server and the recepient) and a list of
statuses of the sent mail. Each status is a 3-tuple containing the address it was sent to, the SMTP status code, and the
server response.

Sending Complex Emails

Sometimes you want to send more complicated emails – ones with headers, or with attachments. sendmail supports
using Python’s email.Message, which lets you make complex emails:

sendmail_message.py

from __future__ import print_function

from twisted.mail.smtp import sendmail
from twisted.internet.task import react

from email.mime.text import MIMEText

def main(reactor):
me = "alice@gmail.com"
to = ["bob@gmail.com", "charlie@gmail.com"]

message = MIMEText("This is my super awesome email, sent with Twisted!")
message["Subject"] = "Twisted is great!"
message["From"] = me
message["To"] = ", ".join(to)

d = sendmail("smtp.gmail.com", me, to, message,
port=587, username=me, password="*********",
requireAuthentication=True,
requireTransportSecurity=True)

d.addBoth(print)
return d

react(main)

For more information on how to use Message, please see the module’s Python docs.

4.2. Developer Guides 345

http://docs.python.org/2.7/library/email-examples.html#email-examples

Twisted Documentation, Release 16.0.0

Enforcing Transport Security

To prevent downgrade attacks, you can pass requireTransportSecurity=True to sendmail. This means
that your emails will not be transmitted in plain text.

For example:

sendmail("smtp.gmail.com", me, to, message,
port=587, username=me, password="*********",
requireTransportSecurity=True)

Conclusion

In this document, you have seen how to:

1. Send an email over SMTP using sendmail.

2. Send an email over encrypted & authenticated ESMTP with sendmail.

3. Send a “complex” email containing a subject line using the stdlib’s email.Message functionality.

4. Enforce transport security for emails sent using sendmail.

• Sending Mail: Sending mail with Twisted

4.3 Twisted Mail Tutorial: Building an SMTP Client from Scratch

4.3.1 Introduction

This tutorial will walk you through the creation of an extremely simple SMTP client application. By the time the
tutorial is complete, you will understand how to create and start a TCP client speaking the SMTP protocol, have it
connect to an appropriate mail exchange server, and transmit a message for delivery.

For the majority of this tutorial, twistd will be used to launch the application. Near the end we will explore other
possibilities for starting a Twisted application. Until then, make sure that you have twistd installed and conveniently
accessible for use in running each of the example .tac files.

SMTP Client 1

The first step is to create smtpclient-1.tac possible for use by twistd .

from twisted.application import service

The first line of the .tac file imports twisted.application.service , a module which contains many of
the basic service classes and helper functions available in Twisted. In particular, we will be using the Application
function to create a new application service . An application service simply acts as a central object on which to store
certain kinds of deployment configuration.

application = service.Application("SMTP Client Tutorial")

The second line of the .tac file creates a new application service and binds it to the local name application .
twistd requires this local name in each .tac file it runs. It uses various pieces of configuration on the object to
determine its behavior. For example, "SMTP Client Tutorial" will be used as the name of the .tap file into
which to serialize application state, should it be necessary to do so.

346 Chapter 4. Twisted Mail

https://twistedmatrix.com/documents/16.0.0/api/twisted.mail.smtp.sendmail.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.mail.smtp.sendmail.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.mail.smtp.sendmail.html

Twisted Documentation, Release 16.0.0

That does it for the first example. We now have enough of a .tac file to pass to twistd . If we run
smtpclient-1.tac using the twistd command line:

twistd -ny smtpclient-1.tac

we are rewarded with the following output:

exarkun@boson:~/mail/tutorial/smtpclient$ twistd -ny smtpclient-1.tac
18:31 EST [-] Log opened.
18:31 EST [-] twistd 2.0.0 (/usr/bin/python2.4 2.4.1) starting up
18:31 EST [-] reactor class: twisted.internet.selectreactor.SelectReactor
18:31 EST [-] Loading smtpclient-1.tac...
18:31 EST [-] Loaded.

As we expected, not much is going on. We can shutdown this server by issuing ^C :

18:34 EST [-] Received SIGINT, shutting down.
18:34 EST [-] Main loop terminated.
18:34 EST [-] Server Shut Down.
exarkun@boson:~/mail/tutorial/smtpclient$

SMTP Client 2

The first version of our SMTP client wasn’t very interesting. It didn’t even establish any TCP connections! The
smtpclient-2.tac will come a little bit closer to that level of complexity. First, we need to import a few more
things:

from twisted.application import internet
from twisted.internet import protocol

twisted.application.internet is another application service module. It provides services for establishing
outgoing connections (as well as creating network servers, though we are not interested in those parts for the moment).
twisted.internet.protocol provides base implementations of many of the core Twisted concepts, such as
factories and protocols .

The next line of smtpclient-2.tac instantiates a new client factory .

smtpClientFactory = protocol.ClientFactory()

Client factories are responsible for constructing protocol instances whenever connections are established. They may
be required to create just one instance, or many instances if many different connections are established, or they may
never be required to create one at all, if no connection ever manages to be established.

Now that we have a client factory, we’ll need to hook it up to the network somehow. The next line of
smtpclient-2.tac does just that:

smtpClientService = internet.TCPClient(None, None, smtpClientFactory)

We’ll ignore the first two arguments to internet.TCPClient for the moment and instead focus on the third.
TCPClient is one of those application service classes. It creates TCP connections to a specified address and then
uses its third argument, a client factory , to get a protocol instance . It then associates the TCP connection with the
protocol instance and gets out of the way.

We can try to run smtpclient-2.tac the same way we ran smtpclient-1.tac , but the results might be a
little disappointing:

exarkun@boson:~/mail/tutorial/smtpclient$ twistd -ny smtpclient-2.tac
18:55 EST [-] Log opened.
18:55 EST [-] twistd SVN-Trunk (/usr/bin/python2.4 2.4.1) starting up

4.3. Twisted Mail Tutorial: Building an SMTP Client from Scratch 347

Twisted Documentation, Release 16.0.0

18:55 EST [-] reactor class: twisted.internet.selectreactor.SelectReactor
18:55 EST [-] Loading smtpclient-2.tac...
18:55 EST [-] Loaded.
18:55 EST [-] Starting factory <twisted.internet.protocol.ClientFactory

instance at 0xb791e46c>
18:55 EST [-] Traceback (most recent call last):

File "twisted/scripts/twistd.py", line 187, in runApp
app.runReactorWithLogging(config, oldstdout, oldstderr)

File "twisted/application/app.py", line 128, in runReactorWithLogging
reactor.run()

File "twisted/internet/posixbase.py", line 200, in run
self.mainLoop()

File "twisted/internet/posixbase.py", line 208, in mainLoop
self.runUntilCurrent()

--- <exception caught here> ---
File "twisted/internet/base.py", line 533, in runUntilCurrent
call.func(*call.args, **call.kw)

File "twisted/internet/tcp.py", line 489, in resolveAddress
if abstract.isIPAddress(self.addr[0]):

File "twisted/internet/abstract.py", line 315, in isIPAddress
parts = string.split(addr, '.')

File "/usr/lib/python2.4/string.py", line 292, in split
return s.split(sep, maxsplit)

exceptions.AttributeError: 'NoneType' object has no attribute 'split'

18:55 EST [-] Received SIGINT, shutting down.
18:55 EST [-] Main loop terminated.
18:55 EST [-] Server Shut Down.
exarkun@boson:~/mail/tutorial/smtpclient$

What happened? Those first two arguments to TCPClient turned out to be important after all. We’ll get to them in
the next example.

SMTP Client 3

Version three of our SMTP client only changes one thing. The line from version two:

smtpClientService = internet.TCPClient(None, None, smtpClientFactory)

has its first two arguments changed from None to something with a bit more meaning:

smtpClientService = internet.TCPClient('localhost', 25, smtpClientFactory)

This directs the client to connect to localhost on port 25 . This isn’t the address we want ultimately, but it’s a good
place-holder for the time being. We can run smtpclient-3.tac and see what this change gets us:

exarkun@boson:~/mail/tutorial/smtpclient$ twistd -ny smtpclient-3.tac
19:10 EST [-] Log opened.
19:10 EST [-] twistd SVN-Trunk (/usr/bin/python2.4 2.4.1) starting up
19:10 EST [-] reactor class: twisted.internet.selectreactor.SelectReactor
19:10 EST [-] Loading smtpclient-3.tac...
19:10 EST [-] Loaded.
19:10 EST [-] Starting factory <twisted.internet.protocol.ClientFactory

instance at 0xb791e48c>
19:10 EST [-] Enabling Multithreading.
19:10 EST [Uninitialized] Traceback (most recent call last):

File "twisted/python/log.py", line 56, in callWithLogger
return callWithContext({"system": lp}, func, *args, **kw)

348 Chapter 4. Twisted Mail

Twisted Documentation, Release 16.0.0

File "twisted/python/log.py", line 41, in callWithContext
return context.call({ILogContext: newCtx}, func, *args, **kw)

File "twisted/python/context.py", line 52, in callWithContext
return self.currentContext().callWithContext(ctx, func, *args, **kw)

File "twisted/python/context.py", line 31, in callWithContext
return func(*args,**kw)

--- <exception caught here> ---
File "twisted/internet/selectreactor.py", line 139, in _doReadOrWrite
why = getattr(selectable, method)()

File "twisted/internet/tcp.py", line 543, in doConnect
self._connectDone()

File "twisted/internet/tcp.py", line 546, in _connectDone
self.protocol = self.connector.buildProtocol(self.getPeer())

File "twisted/internet/base.py", line 641, in buildProtocol
return self.factory.buildProtocol(addr)

File "twisted/internet/protocol.py", line 99, in buildProtocol
p = self.protocol()

exceptions.TypeError: 'NoneType' object is not callable

19:10 EST [Uninitialized] Stopping factory
<twisted.internet.protocol.ClientFactory instance at
0xb791e48c>

19:10 EST [-] Received SIGINT, shutting down.
19:10 EST [-] Main loop terminated.
19:10 EST [-] Server Shut Down.
exarkun@boson:~/mail/tutorial/smtpclient$

A meagre amount of progress, but the service still raises an exception. This time, it’s because we haven’t specified a
protocol class for the factory to use. We’ll do that in the next example.

SMTP Client 4

In the previous example, we ran into a problem because we hadn’t set up our client factory’s protocol attribute correctly
(or at all). ClientFactory.buildProtocol is the method responsible for creating a protocol instance . The
default implementation calls the factory’s protocol attribute, adds itself as an attribute named factory to the
resulting instance, and returns it. In smtpclient-4.tac , we’ll correct the oversight that caused the traceback in
smtpclient-3.tac:

smtpClientFactory.protocol = protocol.Protocol

Running this version of the client, we can see the output is once again traceback free:

exarkun@boson:~/doc/mail/tutorial/smtpclient$ twistd -ny smtpclient-4.tac
19:29 EST [-] Log opened.
19:29 EST [-] twistd SVN-Trunk (/usr/bin/python2.4 2.4.1) starting up
19:29 EST [-] reactor class: twisted.internet.selectreactor.SelectReactor
19:29 EST [-] Loading smtpclient-4.tac...
19:29 EST [-] Loaded.
19:29 EST [-] Starting factory <twisted.internet.protocol.ClientFactory

instance at 0xb791e4ac>
19:29 EST [-] Enabling Multithreading.
19:29 EST [-] Received SIGINT, shutting down.
19:29 EST [Protocol,client] Stopping factory

<twisted.internet.protocol.ClientFactory instance at
0xb791e4ac>

19:29 EST [-] Main loop terminated.

4.3. Twisted Mail Tutorial: Building an SMTP Client from Scratch 349

Twisted Documentation, Release 16.0.0

19:29 EST [-] Server Shut Down.
exarkun@boson:~/doc/mail/tutorial/smtpclient$

But what does this mean? twisted.internet.protocol.Protocol is the base protocol implementation.
For those familiar with the classic UNIX network services, it is equivalent to the discard service. It never produces
any output and it discards all its input. Not terribly useful, and certainly nothing like an SMTP client. Let’s see how
we can improve this in the next example.

SMTP Client 5

In smtpclient-5.tac , we will begin to use Twisted’s SMTP protocol implementation for the first time.
We’ll make the obvious change, simply swapping out twisted.internet.protocol.Protocol in favor of
twisted.mail.smtp.ESMTPClient . Don’t worry about the E in ESMTP . It indicates we’re actually using a
newer version of the SMTP protocol. There is an SMTPClient in Twisted, but there’s essentially no reason to ever
use it.

smtpclient-5.tac adds a new import:

from twisted.mail import smtp

All of the mail related code in Twisted exists beneath the twisted.mail package. More specifically, everything
having to do with the SMTP protocol implementation is defined in the twisted.mail.smtp module.

Next we remove a line we added in smtpclient-4.tac:

smtpClientFactory.protocol = protocol.Protocol

And add a similar one in its place:

smtpClientFactory.protocol = smtp.ESMTPClient

Our client factory is now using a protocol implementation which behaves as an SMTP client. What happens when we
try to run this version?

exarkun@boson:~/doc/mail/tutorial/smtpclient$ twistd -ny smtpclient-5.tac
19:42 EST [-] Log opened.
19:42 EST [-] twistd SVN-Trunk (/usr/bin/python2.4 2.4.1) starting up
19:42 EST [-] reactor class: twisted.internet.selectreactor.SelectReactor
19:42 EST [-] Loading smtpclient-5.tac...
19:42 EST [-] Loaded.
19:42 EST [-] Starting factory <twisted.internet.protocol.ClientFactory

instance at 0xb791e54c>
19:42 EST [-] Enabling Multithreading.
19:42 EST [Uninitialized] Traceback (most recent call last):

File "twisted/python/log.py", line 56, in callWithLogger
return callWithContext({"system": lp}, func, *args, **kw)

File "twisted/python/log.py", line 41, in callWithContext
return context.call({ILogContext: newCtx}, func, *args, **kw)

File "twisted/python/context.py", line 52, in callWithContext
return self.currentContext().callWithContext(ctx, func, *args, **kw)

File "twisted/python/context.py", line 31, in callWithContext
return func(*args,**kw)

--- <exception caught here> ---
File "twisted/internet/selectreactor.py", line 139, in _doReadOrWrite
why = getattr(selectable, method)()

File "twisted/internet/tcp.py", line 543, in doConnect
self._connectDone()

File "twisted/internet/tcp.py", line 546, in _connectDone

350 Chapter 4. Twisted Mail

Twisted Documentation, Release 16.0.0

self.protocol = self.connector.buildProtocol(self.getPeer())
File "twisted/internet/base.py", line 641, in buildProtocol

return self.factory.buildProtocol(addr)
File "twisted/internet/protocol.py", line 99, in buildProtocol

p = self.protocol()
exceptions.TypeError: __init__() takes at least 2 arguments (1 given)

19:42 EST [Uninitialized] Stopping factory
<twisted.internet.protocol.ClientFactory instance at
0xb791e54c>

19:43 EST [-] Received SIGINT, shutting down.
19:43 EST [-] Main loop terminated.
19:43 EST [-] Server Shut Down.
exarkun@boson:~/doc/mail/tutorial/smtpclient$

Oops, back to getting a traceback. This time, the default implementation of buildProtocol seems no longer to be
sufficient. It instantiates the protocol with no arguments, but ESMTPClient wants at least one argument. In the next
version of the client, we’ll override buildProtocol to fix this problem.

SMTP Client 6

smtpclient-6.tac introduces a twisted.internet.protocol.ClientFactory subclass with an
overridden buildProtocol method to overcome the problem encountered in the previous example.

class SMTPClientFactory(protocol.ClientFactory):
protocol = smtp.ESMTPClient

def buildProtocol(self, addr):
return self.protocol(secret=None, identity='example.com')

The overridden method does almost the same thing as the base implementation: the only change is that it passes
values for two arguments to twisted.mail.smtp.ESMTPClient ‘s initializer. The secret argument is used
for SMTP authentication (which we will not attempt yet). The identity argument is used as a to identify ourselves
Another minor change to note is that the protocol attribute is now defined in the class definition, rather than tacked
onto an instance after one is created. This means it is a class attribute, rather than an instance attribute, now, which
makes no difference as far as this example is concerned. There are circumstances in which the difference is important:
be sure you understand the implications of each approach when creating your own factories.

One other change is required: instead of instantiating twisted.internet.protocol.ClientFactory , we
will now instantiate SMTPClientFactory :

smtpClientFactory = SMTPClientFactory()

Running this version of the code, we observe that the code still isn’t quite traceback-free.

exarkun@boson:~/doc/mail/tutorial/smtpclient$ twistd -ny smtpclient-6.tac
21:17 EST [-] Log opened.
21:17 EST [-] twistd SVN-Trunk (/usr/bin/python2.4 2.4.1) starting up
21:17 EST [-] reactor class: twisted.internet.selectreactor.SelectReactor
21:17 EST [-] Loading smtpclient-6.tac...
21:17 EST [-] Loaded.
21:17 EST [-] Starting factory <__builtin__.SMTPClientFactory instance

at 0xb77fd68c>
21:17 EST [-] Enabling Multithreading.
21:17 EST [ESMTPClient,client] Traceback (most recent call last):

File "twisted/python/log.py", line 56, in callWithLogger
return callWithContext({"system": lp}, func, *args, **kw)

4.3. Twisted Mail Tutorial: Building an SMTP Client from Scratch 351

Twisted Documentation, Release 16.0.0

File "twisted/python/log.py", line 41, in callWithContext
return context.call({ILogContext: newCtx}, func, *args, **kw)

File "twisted/python/context.py", line 52, in callWithContext
return self.currentContext().callWithContext(ctx, func, *args, **kw)

File "twisted/python/context.py", line 31, in callWithContext
return func(*args,**kw)

--- <exception caught here> ---
File "twisted/internet/selectreactor.py", line 139, in _doReadOrWrite
why = getattr(selectable, method)()

File "twisted/internet/tcp.py", line 351, in doRead
return self.protocol.dataReceived(data)

File "twisted/protocols/basic.py", line 221, in dataReceived
why = self.lineReceived(line)

File "twisted/mail/smtp.py", line 1039, in lineReceived
why = self._okresponse(self.code,'\n'.join(self.resp))

File "twisted/mail/smtp.py", line 1281, in esmtpState_serverConfig
self.tryTLS(code, resp, items)

File "twisted/mail/smtp.py", line 1294, in tryTLS
self.authenticate(code, resp, items)

File "twisted/mail/smtp.py", line 1343, in authenticate
self.smtpState_from(code, resp)

File "twisted/mail/smtp.py", line 1062, in smtpState_from
self._from = self.getMailFrom()

File "twisted/mail/smtp.py", line 1137, in getMailFrom
raise NotImplementedError

exceptions.NotImplementedError:

21:17 EST [ESMTPClient,client] Stopping factory
<__builtin__.SMTPClientFactory instance at 0xb77fd68c>

21:17 EST [-] Received SIGINT, shutting down.
21:17 EST [-] Main loop terminated.
21:17 EST [-] Server Shut Down.
exarkun@boson:~/doc/mail/tutorial/smtpclient$

What we have accomplished with this iteration of the example is to navigate far enough into an SMTP transaction that
Twisted is now interested in calling back to application-level code to determine what its next step should be. In the
next example, we’ll see how to provide that information to it.

SMTP Client 7

SMTP Client 7 is the first version of our SMTP client which actually includes message data to transmit. For simplic-
ity’s sake, the message is defined as part of a new class. In a useful program which sent email, message data might
be pulled in from the filesystem, a database, or be generated based on user-input. smtpclient-7.tac , however,
defines a new class, SMTPTutorialClient , with three class attributes (mailFrom , mailTo , and mailData
):

class SMTPTutorialClient(smtp.ESMTPClient):
mailFrom = "tutorial_sender@example.com"
mailTo = "tutorial_recipient@example.net"
mailData = '''\

Date: Fri, 6 Feb 2004 10:14:39 -0800
From: Tutorial Guy <tutorial_sender@example.com>
To: Tutorial Gal <tutorial_recipient@example.net>
Subject: Tutorate!

Hello, how are you, goodbye.
'''

352 Chapter 4. Twisted Mail

Twisted Documentation, Release 16.0.0

This statically defined data is accessed later in the class definition by three of the methods which are part of the
SMTPClient callback API . Twisted expects each of the three methods below to be defined and to return an object with
a particular meaning. First, getMailFrom :

def getMailFrom(self):
result = self.mailFrom
self.mailFrom = None
return result

This method is called to determine the reverse-path , otherwise known as the envelope from , of the message. This
value will be used when sending the MAIL FROM SMTP command. The method must return a string which conforms
to the RFC 2821 definition of a reverse-path . In simpler terms, it should be a string like "alice@example.com"
. Only one envelope from is allowed by the SMTP protocol, so it cannot be a list of strings or a comma separated list
of addresses. Our implementation of getMailFrom does a little bit more than just return a string; we’ll get back to
this in a little bit.

The next method is getMailTo :

def getMailTo(self):
return [self.mailTo]

getMailTo is similar to getMailFrom . It returns one or more RFC 2821 addresses (this time a forward-path ,
or envelope to). Since SMTP allows multiple recipients, getMailTo returns a list of these addresses. The list must
contain at least one address, and even if there is exactly one recipient, it must still be in a list.

The final callback we will define to provide information to Twisted is getMailData :

def getMailData(self):
return StringIO.StringIO(self.mailData)

This one is quite simple as well: it returns a file or a file-like object which contains the message contents. In our case,
we return a StringIO since we already have a string containing our message. If the contents of the file returned by
getMailData span multiple lines (as email messages often do), the lines should be \n delimited (as they would
be when opening a text file in the "rt" mode): necessary newline translation will be performed by SMTPClient
automatically.

There is one more new callback method defined in smtpclient-7.tac. This one isn’t for providing information about the
messages to Twisted, but for Twisted to provide information about the success or failure of the message transmission
to the application:

def sentMail(self, code, resp, numOk, addresses, log):
print 'Sent', numOk, 'messages'

Each of the arguments to sentMail provides some information about the success or failure of the message trans-
mission transaction. code is the response code from the ultimate command. For successful transactions, it will be
250. For transient failures (those which should be retried), it will be between 400 and 499, inclusive. For permanent
failures (this which will never work, no matter how many times you retry them), it will be between 500 and 599.

SMTP Client 8

Thus far we have succeeded in creating a Twisted client application which starts up, connects to a (possibly) remote
host, transmits some data, and disconnects. Notably missing, however, is application shutdown. Hitting ^C is fine
during development, but it’s not exactly a long-term solution. Fortunately, programmatic shutdown is extremely
simple. smtpclient-8.tac extends sentMail with these two lines:

from twisted.internet import reactor
reactor.stop()

4.3. Twisted Mail Tutorial: Building an SMTP Client from Scratch 353

http://www.faqs.org/rfcs/rfc2821.html

Twisted Documentation, Release 16.0.0

The stop method of the reactor causes the main event loop to exit, allowing a Twisted server to shut down. With
this version of the example, we see that the program actually terminates after sending the message, without user-
intervention:

exarkun@boson:~/doc/mail/tutorial/smtpclient$ twistd -ny smtpclient-8.tac
19:52 EST [-] Log opened.
19:52 EST [-] twistd SVN-Trunk (/usr/bin/python2.4 2.4.1) starting up
19:52 EST [-] reactor class: twisted.internet.selectreactor.SelectReactor
19:52 EST [-] Loading smtpclient-8.tac...
19:52 EST [-] Loaded.
19:52 EST [-] Starting factory <__builtin__.SMTPClientFactory instance

at 0xb791beec>
19:52 EST [-] Enabling Multithreading.
19:52 EST [SMTPTutorialClient,client] Sent 1 messages
19:52 EST [SMTPTutorialClient,client] Stopping factory

<__builtin__.SMTPClientFactory instance at 0xb791beec>
19:52 EST [-] Main loop terminated.
19:52 EST [-] Server Shut Down.
exarkun@boson:~/doc/mail/tutorial/smtpclient$

SMTP Client 9

One task remains to be completed in this tutorial SMTP client: instead of always sending mail through a well-known
host, we will look up the mail exchange server for the recipient address and try to deliver the message to that host.

In smtpclient-9.tac , we’ll take the first step towards this feature by defining a function which returns the mail
exchange host for a particular domain:

def getMailExchange(host):
return 'localhost'

Obviously this doesn’t return the correct mail exchange host yet (in fact, it returns the exact same host we have been
using all along), but pulling out the logic for determining which host to connect to into a function like this is the
first step towards our ultimate goal. Now that we have getMailExchange , we’ll call it when constructing our
TCPClient service:

smtpClientService = internet.TCPClient(
getMailExchange('example.net'), 25, smtpClientFactory)

We’ll expand on the definition of getMailExchange in the next example.

SMTP Client 10

In the previous example we defined getMailExchange to return a string representing the mail exchange host for
a particular domain. While this was a step in the right direction, it turns out not to be a very big one. Determining
the mail exchange host for a particular domain is going to involve network traffic (specifically, some DNS requests).
These might take an arbitrarily large amount of time, so we need to introduce a Deferred to represent the result of
getMailExchange . smtpclient-10.tac redefines it thusly:

def getMailExchange(host):
return defer.succeed('localhost')

defer.succeed is a function which creates a new Deferred which already has a result, in this case
’localhost’ . Now we need to adjust our TCPClient -constructing code to expect and properly handle this
Deferred :

354 Chapter 4. Twisted Mail

Twisted Documentation, Release 16.0.0

def cbMailExchange(exchange):
smtpClientFactory = SMTPClientFactory()

smtpClientService = internet.TCPClient(exchange, 25, smtpClientFactory)
smtpClientService.setServiceParent(application)

getMailExchange('example.net').addCallback(cbMailExchange)

An in-depth exploration of Deferred s is beyond the scope of this document. For such a look, see the Deferred
Reference TCPClient until the Deferred returned by getMailExchange fires. Once it does, we proceed
normally through the creation of our SMTPClientFactory and TCPClient , as well as set the TCPClient ‘s
service parent, just as we did in the previous examples.

SMTP Client 11

At last we’re ready to perform the mail exchange lookup. We do this by calling on an object provided specifically for
this task, twisted.mail.relaymanager.MXCalculator :

def getMailExchange(host):
def cbMX(mxRecord):

return str(mxRecord.name)
return relaymanager.MXCalculator().getMX(host).addCallback(cbMX)

Because getMX returns a Record_MX object rather than a string, we do a little bit of post-processing to get
the results we want. We have already converted the rest of the tutorial application to expect a Deferred from
getMailExchange , so no further changes are required. smtpclient-11.tac completes this tutorial by being
able to both look up the mail exchange host for the recipient domain, connect to it, complete an SMTP transaction,
report its results, and finally shut down the reactor.

• Examples: short code examples using Twisted Mail

• Developer Guides: documentation on using Twisted Mail

• Twisted Mail Tutorial: Building an SMTP Client from Scratch

4.3. Twisted Mail Tutorial: Building an SMTP Client from Scratch 355

Twisted Documentation, Release 16.0.0

356 Chapter 4. Twisted Mail

CHAPTER 5

Twisted Names

5.1 Developer Guides

5.1.1 A Guided Tour of twisted.names.client

Twisted Names provides a layered selection of client APIs.

In this section you will learn:

• about the high level client API,

• about how you can use the client API interactively from the Python shell (useful for DNS debugging and diag-
nostics),

• about the IResolverSimple and the IResolver interfaces,

• about various implementations of those interfaces and when to use them,

• how to customise how the reactor carries out hostname resolution,

• and finally, you will also be introduced to some of the low level APIs.

Using the Global Resolver

The easiest way to issue DNS queries from Twisted is to use the module level functions in names.client.

Here’s an example showing some DNS queries generated in an interactive twisted.conch shell.

Note: The twisted.conch shell starts a reactor so that asynchronous operations can be run interactively and
it prints the current result of deferreds which have fired.

You’ll notice that the deferreds returned in the following examples do not immediately have a result – they are
waiting for a response from the DNS server.

So we type _ (the default variable) a little later, to display the value of the deferred after an answer has been
received and the deferred has fired.

$ python -m twisted.conch.stdio

>>> from twisted.names import client
>>> client.getHostByName('www.example.com')
<Deferred at 0xf5c5a8 waiting on Deferred at 0xf5cb90>

357

https://twistedmatrix.com/documents/16.0.0/api/twisted.names.client.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IResolverSimple.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IResolver.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.names.client.html

Twisted Documentation, Release 16.0.0

>>> _
<Deferred at 0xf5c5a8 current result: '2606:2800:220:6d:26bf:1447:1097:aa7'>

>>> client.lookupMailExchange('twistedmatrix.com')
<Deferred at 0xf5cd40 waiting on Deferred at 0xf5cea8>
>>> _
<Deferred at 0xf5cd40 current result: ([<RR name=twistedmatrix.com type=MX class=IN ttl=1s auth=False>], [], [])>

All the IResolverSimple and IResolver methods are asynchronous and therefore return deferreds.

getHostByName (part of IResolverSimple) returns an IP address whereas lookupMailExchange returns three lists of
DNS records. These three lists contain answer records, authority records, and additional records.

Note:

• getHostByName may return an IPv6 address; unlike its stdlib equivalent (socket.gethostbyname())

• IResolver contains separate functions for looking up each of the common DNS record types.

• IResolver includes a lower level query function for issuing arbitrary queries.

• The names.client module directlyProvides both the IResolverSimple and the IResolver interfaces.

• createResolver constructs a global resolver which performs queries against the same DNS sources and servers
used by the underlying operating system.

That is, it will use the DNS server IP addresses found in a local resolv.conf file (if the operating system
provides such a file) and it will use an OS specific hosts file path.

A simple example

In this section you will learn how the IResolver interface can be used to write a utility for performing a reverse DNS
lookup for an IPv4 address. dig can do this too, so lets start by examining its output:

$ dig -x 127.0.0.1
...
;; QUESTION SECTION:
;1.0.0.127.in-addr.arpa. IN PTR

;; ANSWER SECTION:
1.0.0.127.in-addr.arpa. 86400 IN PTR localhost.
...

As you can see, dig has performed a DNS query with the following attributes:

• Name: 1.0.0.127.in-addr.arpa.

• Class: IN

• Type: PTR

The name is a reverse domain name and is derived by reversing an IPv4 address and prepending it to the special
in-addr.arpa parent domain name. So, lets write a function to create a reverse domain name from an IP address.

def reverseNameFromIPAddress(address):
return '.'.join(reversed(address.split('.'))) + '.in-addr.arpa'

We can test the output from a python shell:

358 Chapter 5. Twisted Names

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IResolverSimple.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IResolver.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.names.client.getHostByName.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IResolverSimple.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.names.client.lookupMailExchange.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.names.client.getHostByName.html
http://docs.python.org/3.3/library/socket.html#socket.gethostbyname
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IResolver.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IResolver.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.names.client.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IResolverSimple.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.names.internet.IResolver.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.names.client.createResolver.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IResolver.html
https://en.wikipedia.org/wiki/Reverse_DNS_lookup
https://en.wikipedia.org/wiki/Reverse_DNS_lookup
https://en.wikipedia.org/wiki/Dig_(command)

Twisted Documentation, Release 16.0.0

>>> reverseNameFromIPAddress('192.0.2.100')
'100.2.0.192.in-addr.arpa'

We’re going to use twisted.names.client.lookupPointer to perform the actual DNS lookup. So lets examine the output
of lookupPointer so that we can design a function to format and print its results in a style similar to dig.

Note: lookupPointer is an asynchronous function, so we’ll use an interactive twisted.conch shell here.

$ python -m twisted.conch.stdio

>>> from twisted.names import client
>>> from reverse_lookup import reverseNameFromIPAddress
>>> d = client.lookupPointer(name=reverseNameFromIPAddress('127.0.0.1'))
>>> d
<Deferred at 0x286b170 current result: ([<RR name=1.0.0.127.in-addr.arpa type=PTR class=IN ttl=86400s auth=False>], [], [])>
>>> d.result
([<RR name=1.0.0.127.in-addr.arpa type=PTR class=IN ttl=86400s auth=False>], [], [])

The deferred result of lookupPointer is a tuple containing three lists of records; answers, authority, and addi-
tional. The actual record is a Record_PTR instance which can be reached via the RRHeader.payload attribute.

>>> recordHeader = d.result[0][0]
>>> recordHeader.payload
<PTR name=localhost ttl=86400>

So, now we’ve found the information we need, lets create a function that extracts the first answer and prints the domain
name and the record payload.

def printResult(result):
answers, authority, additional = result
if answers:

a = answers[0]
print('{} IN {}'.format(a.name.name, a.payload))

And lets test the output:

>>> from twisted.names import dns
>>> printResult(([dns.RRHeader(name='1.0.0.127.in-addr.arpa', type=dns.PTR, payload=dns.Record_PTR('localhost'))], [], []))
1.0.0.127.in-addr.arpa IN <PTR name=localhost ttl=None>

Fine! Now we can assemble the pieces in a main function, which we’ll call using twisted.internet.task.react. Here’s
the complete script.

listings/names/reverse_lookup.py

import sys

from twisted.internet import task
from twisted.names import client

def reverseNameFromIPAddress(address):
return '.'.join(reversed(address.split('.'))) + '.in-addr.arpa'

def printResult(result):
answers, authority, additional = result
if answers:

a = answers[0]
print('{} IN {}'.format(a.name.name, a.payload))

5.1. Developer Guides 359

https://twistedmatrix.com/documents/16.0.0/api/twisted.names.client.lookupPointer.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.names.dns.Record_PTR.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.names.dns.RRHeader.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.task.react.html

Twisted Documentation, Release 16.0.0

def main(reactor, address):
d = client.lookupPointer(name=reverseNameFromIPAddress(address=address))
d.addCallback(printResult)
return d

task.react(main, sys.argv[1:])

The output looks like this:

$ python reverse_lookup.py 127.0.0.1
1.0.0.127.in-addr.arpa IN <PTR name=localhost ttl=86400>

Note:

• You can read more about reverse domain names in RFC 1034#section-5.2.1.

• We’ve ignored IPv6 addresses in this example, but you can read more about reverse IPv6 domain names in RFC
3596#section-2.5 and the example could easily be extended to support these.

• You might also consider using netaddr, which can generate reverse domain names and which also includes
sophisticated IP network and IP address handling.

• This script only prints the first answer, but sometimes you’ll get multiple answers due to CNAME indirection,
for example in the case of classless reverse zones.

• All lookups and responses are handled asynchronously, so the script could be extended to perform thousands of
reverse DNS lookups in parallel.

Next you should study ../examples/multi_reverse_lookup.py which extends this example to perform
both IPv4 and IPv6 addresses and which can perform multiple reverse DNS lookups in parallel.

Creating a New Resolver

Now suppose we want to create a DNS client which sends its queries to a specific server (or servers).

In this case, we use client.Resolver directly and pass it a list of preferred server IP addresses and ports.

For example, suppose we want to lookup names using the free Google DNS servers:

$ python -m twisted.conch.stdio

>>> from twisted.names import client
>>> resolver = client.createResolver(servers=[('8.8.8.8', 53), ('8.8.4.4', 53)])
>>> resolver.getHostByName('example.com')
<Deferred at 0x9dcfbac current result: '93.184.216.119'>

Here we are using the Google DNS server IP addresses and the standard DNS port (53).

Installing a Resolver in the Reactor

You can also install a custom resolver into the reactor using the IReactorPluggable interface.

The reactor uses its installed resolver whenever it needs to resolve hostnames; for example, when you supply a host-
name to connectTCP.

Here’s a short example that shows how to install an alternative resolver for the global reactor:

360 Chapter 5. Twisted Names

https://tools.ietf.org/html/rfc1034.html#section-5.2.1
https://tools.ietf.org/html/rfc3596.html#section-2.5
https://tools.ietf.org/html/rfc3596.html#section-2.5
https://pypi.python.org/pypi/netaddr/
https://twistedmatrix.com/documents/16.0.0/api/twisted.names.client.Resolver.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactoryPluggable.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactoryTCP.connectTCP.html

Twisted Documentation, Release 16.0.0

from twisted.internet import reactor
from twisted.names import client
reactor.installResolver(client.createResolver(servers=[('8.8.8.8', 53), ('8.8.4.4', 53)]))

After this, all hostname lookups requested by the reactor will be sent to the Google DNS servers; instead of to the
local operating system.

Note:

• By default the reactor uses the POSIX gethostbyname function provided by the operating system,

• but gethostbyname is a blocking function, so it has to be called in a thread pool.

• Check out ThreadedResolver if you’re interested in learning more about how the default threaded resolver works.

Lower Level APIs

Here’s an example of how to use the DNSDatagramProtocol directly.

from twisted.internet import task
from twisted.names import dns

def main(reactor):
proto = dns.DNSDatagramProtocol(controller=None)
reactor.listenUDP(0, proto)

d = proto.query(('8.8.8.8', 53), [dns.Query('www.example.com', dns.AAAA)])
d.addCallback(printResult)
return d

def printResult(res):
print 'ANSWERS: ', [a.payload for a in res.answers]

task.react(main)

The disadvantage of working at this low level is that you will need to handle query failures yourself, by manually
re-issuing queries or by issuing followup TCP queries using the stream based dns.DNSProtocol.

These things are handled automatically by the higher level APIs in client.

Also notice that in this case, the deferred result of dns.DNSDatagramProtocol.query is a dns.Message object, rather
than a list of DNS records.

Further Reading

Check out the Twisted Names Examples which demonstrate how the client APIs can be used to create useful DNS
diagnostic tools.

5.1.2 Creating and working with a names (DNS) server

A Names server can be perform three basic operations:

• act as a recursive server, forwarding queries to other servers

• perform local caching of recursively discovered records

5.1. Developer Guides 361

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.base.ThreadedResolver.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.names.dns.DNSDatagramProtocol.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.names.dns.DNSProtocol.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.names.client.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.names.dns.DNSDatagramProtocol.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.names.dns.Message.html

Twisted Documentation, Release 16.0.0

• act as the authoritative server for a domain

Creating a non-authoritative server

The first two of these are easy, and you can create a server that performs them with the command twistd -n dns
--recursive --cache . You may wish to run this as root since it will try to bind to UDP port 53. Try performing
a lookup with it, dig twistedmatrix.com @127.0.0.1 .

Creating an authoritative server

To act as the authority for a domain, two things are necessary: the address of the machine on which the domain name
server will run must be registered as a nameserver for the domain; and the domain name server must be configured to
act as the authority. The first requirement is beyond the scope of this howto and will not be covered.

To configure Names to act as the authority for example-domain.com , we first create a zone file for this domain.

example-domain.com

zone = [
SOA(

For whom we are the authority
'example-domain.com',

This nameserver's name
mname = "ns1.example-domain.com",

Mailbox of individual who handles this
rname = "root.example-domain.com",

Unique serial identifying this SOA data
serial = 2003010601,

Time interval before zone should be refreshed
refresh = "1H",

Interval before failed refresh should be retried
retry = "1H",

Upper limit on time interval before expiry
expire = "1H",

Minimum TTL
minimum = "1H"

),

A('example-domain.com', '127.0.0.1'),
NS('example-domain.com', 'ns1.example-domain.com'),

CNAME('www.example-domain.com', 'example-domain.com'),
CNAME('ftp.example-domain.com', 'example-domain.com'),

MX('example-domain.com', 0, 'mail.example-domain.com'),
A('mail.example-domain.com', '123.0.16.43')

]

Next, run the command twistd -n dns --pyzone example-domain.com . Now try querying the domain
locally (again, with dig): dig -t any example-domain.com @127.0.0.1 .

362 Chapter 5. Twisted Names

Twisted Documentation, Release 16.0.0

Names can also read a traditional, BIND-syntax zone file. Specify these with the --bindzone parameter. The
$GENERATE and $INCLUDE directives are not yet supported.

5.1.3 Creating a custom server

The builtin DNS server plugin is useful, but the beauty of Twisted Names is that you can build your own custom
servers and clients using the names components.

• In this section you will learn about the components required to build a simple DNS server.

• You will then learn how to create a custom DNS server which calculates responses dynamically.

A simple forwarding DNS server

Lets start by creating a simple forwarding DNS server, which forwards all requests to an upstream server (or servers).

simple_server.py

Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

"""
An example of a simple non-authoritative DNS server.
"""

from twisted.internet import reactor
from twisted.names import client, dns, server

def main():
"""
Run the server.
"""
factory = server.DNSServerFactory(

clients=[client.Resolver(resolv='/etc/resolv.conf')]
)

protocol = dns.DNSDatagramProtocol(controller=factory)

reactor.listenUDP(10053, protocol)
reactor.listenTCP(10053, factory)

reactor.run()

if __name__ == '__main__':
raise SystemExit(main())

In this example we are passing a client.Resolver instance to the DNSServerFactory and we are configuring that client
to use the upstream DNS servers which are specified in a local resolv.conf file.

Also note that we start the server listening on both UDP and TCP ports. This is a standard requirement for DNS
servers.

You can test the server using dig. For example:

$ dig -p 10053 @127.0.0.1 example.com SOA +short
sns.dns.icann.org. noc.dns.icann.org. 2013102791 7200 3600 1209600 3600

5.1. Developer Guides 363

https://twistedmatrix.com/documents/16.0.0/api/twisted.names.client.Resolver.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.names.server.DNSServerFactory.html

Twisted Documentation, Release 16.0.0

A server which computes responses dynamically

Now suppose we want to create a bespoke DNS server which responds to certain hostname queries by dynamically
calculating the resulting IP address, while passing all other queries to another DNS server. Queries for hostnames
matching the pattern workstation{0-9}+ will result in an IP address where the last octet matches the workstation
number.

We’ll write a custom resolver which we insert before the standard client resolver. The custom resolver will be queried
first.

Here’s the code:

override_server.py

Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

"""
An example demonstrating how to create a custom DNS server.

The server will calculate the responses to A queries where the name begins with
the word "workstation".

Other queries will be handled by a fallback resolver.

eg
python doc/names/howto/listings/names/override_server.py

$ dig -p 10053 @localhost workstation1.example.com A +short
172.0.2.1

"""

from twisted.internet import reactor, defer
from twisted.names import client, dns, error, server

class DynamicResolver(object):
"""
A resolver which calculates the answers to certain queries based on the
query type and name.
"""
_pattern = 'workstation'
_network = '172.0.2'

def _dynamicResponseRequired(self, query):
"""
Check the query to determine if a dynamic response is required.
"""
if query.type == dns.A:

labels = query.name.name.split('.')
if labels[0].startswith(self._pattern):

return True

return False

def _doDynamicResponse(self, query):
"""

364 Chapter 5. Twisted Names

Twisted Documentation, Release 16.0.0

Calculate the response to a query.
"""
name = query.name.name
labels = name.split('.')
parts = labels[0].split(self._pattern)
lastOctet = int(parts[1])
answer = dns.RRHeader(

name=name,
payload=dns.Record_A(address=b'%s.%s' % (self._network, lastOctet)))

answers = [answer]
authority = []
additional = []
return answers, authority, additional

def query(self, query, timeout=None):
"""
Check if the query should be answered dynamically, otherwise dispatch to
the fallback resolver.
"""
if self._dynamicResponseRequired(query):

return defer.succeed(self._doDynamicResponse(query))
else:

return defer.fail(error.DomainError())

def main():
"""
Run the server.
"""
factory = server.DNSServerFactory(

clients=[DynamicResolver(), client.Resolver(resolv='/etc/resolv.conf')]
)

protocol = dns.DNSDatagramProtocol(controller=factory)

reactor.listenUDP(10053, protocol)
reactor.listenTCP(10053, factory)

reactor.run()

if __name__ == '__main__':
raise SystemExit(main())

Notice that DynamicResolver.query returns a Deferred. On success, it returns three lists of DNS records
(answers, authority, additional), which will be encoded by dns.Message and returned to the client. On failure, it
returns a DomainError, which is a signal that the query should be dispatched to the next client resolver in the list.

Note: The fallback behaviour is actually handled by ResolverChain.

ResolverChain is a proxy for other resolvers. It takes a list of IResolver providers and queries each one in turn until it
receives an answer, or until the list is exhausted.

Each IResolver in the chain may return a deferred DomainError, which is a signal that ResolverChain should query
the next chained resolver.

5.1. Developer Guides 365

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.names.dns.Message.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.names.error.DomainError.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.names.resolve.ResolverChain.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IResolver.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IResolver.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.names.error.DomainError.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.names.resolve.ResolverChain.html

Twisted Documentation, Release 16.0.0

The DNSServerFactory constructor takes a list of authoritative resolvers, caches and client resolvers and ensures that
they are added to the ResolverChain in the correct order.

Let’s use dig to see how this server responds to requests that match the pattern we specified:

$ dig -p 10053 @127.0.0.1 workstation1.example.com A +short
172.0.2.1

$ dig -p 10053 @127.0.0.1 workstation100.example.com A +short
172.0.2.100

And if we issue a request that doesn’t match the pattern:

$ dig -p 10053 @localhost www.example.com A +short
93.184.216.119

Further Reading

For simplicity, the examples above use the reactor.listenXXX APIs. But your application will be more flexible
if you use the Twisted Application APIs, along with the Twisted plugin system and twistd. Read the source code of
names.tap to see how the twistd names plugin works.

• A guided tour of twisted.names.client

• Using the twistd plugin

• Create a custom DNS server

5.2 Examples

5.2.1 DNS (Twisted Names)

• testdns.py - Prints the results of an Address record lookup, Mail-Exchanger record lookup, and Nameserver
record lookup for the given domain name.

• dns-service.py - Searches for SRV records in DNS.

• gethostbyname.py - Returns the IP address for a given hostname.

Twisted Names is a library of DNS components for building DNS servers and clients.

It includes a client resolver API, with which you can generate queries for all the standard record types. The client
API also includes a replacement for the blocking gethostbyname() function provided by the Python stdlib socket
module.

Twisted Names provides a twistd DNS server plugin which can:

• Act as a master authoritative server which can read most BIND-syntax zone files as well as a simple Python-
based configuration format.

• Act as a secondary authoritative DNS server, which retrieves its records from a master server by zone transfer.

• Act as a caching / forwarding nameserver which forwards requests to one or more upstream recursive name-
servers and caches the results.

• Or any combination of these.

366 Chapter 5. Twisted Names

https://twistedmatrix.com/documents/16.0.0/api/twisted.names.server.DNSServerFactory.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.names.resolve.ResolverChain.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.names.tap.html

Twisted Documentation, Release 16.0.0

The following developer guides, example scripts and API documentation will demonstrate how to use these compo-
nents and provide you with all the information you need to build your own custom DNS client or server using Twisted
Names.

• Developer guides: documentation on using Twisted Names to develop your own applications

• Examples: short code examples using Twisted Names

• API documentation: Detailed API documentation for all the Twisted Names components

5.2. Examples 367

https://twistedmatrix.com/documents/16.0.0/api/twisted.names.html

Twisted Documentation, Release 16.0.0

368 Chapter 5. Twisted Names

CHAPTER 6

Twisted Pair

6.1 Developer Guides

6.1.1 Twisted Pair: Tunnels And Network Taps

On Linux, Twisted Pair supports the special tun and tap network interface types. This functionality allows you to
interact with raw sockets (for example, to send or receive ICMP or ARP traffic). It also allows the creation of simulated
networks. This document will not cover the details of these platform-provided features, but it will explain how to use
the Twisted Pair APIs which interact with them. Before reading this document, you may want to familiarize yourself
with Linux tuntap if you have not already done so (good online resources, are a little scarce, but you may find the linux
tuntap tutorial google results helpful).

Tuntap Ports

The twisted.pair.tuntap.TuntapPort class is the entry point into the tun/tap functionality. This class is initialized with
an application-supplied protocol object and associates that object with a tun or tap device on the system. If the protocol
provides twisted.pair.ethernet.IEthernetProtocol then it is associated with a tap device. Otherwise the protocol must
provide twisted.pair.raw.IRawPacketProtocol and it will be associated with a tun device.

from zope.interface import implementer
from twisted.pair.tuntap import TuntapPort
from twisted.pair.ethernet import EthernetProtocol
from twisted.pair.rawudp import RawUDPProtocol
from twisted.internet import reactor

Note that you must run this example as a user with permission to open this
device. That means run it as root or pre-configure tap0 and assign ownership
of it to a non-root user. The same goes for tun0 below.

tap = TuntapPort(b"tap0", EthernetProtocol(), reactor=reactor)
tap.startListening()

tun = TuntapPort(b"tun0", RawUDPProtocol(), reactor=reactor)
tun.startListening()

In the above example two protocols are attached to the network: one to a tap device and the other to a tun device.
The EthernetProtocol used in this example is a very simple implementation of IEthernetProtocol which
does nothing more than dispatch to some other protocol based on the protocol found in the header of each ethernet
frame it receives. RawUDPProtocol is similar - it dispatches to other protocols based on the UDP port of IP
datagrams it received. This example won’t do anything since no application protocols have been added to either the

369

https://www.google.com/search?q=linux+tuntap+tutorial
https://www.google.com/search?q=linux+tuntap+tutorial
https://twistedmatrix.com/documents/16.0.0/api/twisted.pair.tuntap.TuntapPort.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.pair.ethernet.IEthernetProtocol.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.pair.raw.IRawPacketProtocol.html

Twisted Documentation, Release 16.0.0

EthernetProtocol or RawUDPProtocol instances (not to mention the reactor isn’t being started). However, it
should give you some idea of how tun/tap functionality fits into a Twisted application.

By the behaviors of these two protocols you can see the primary difference between tap and tun devices. The lower
level of the two, tap devices, is hooked in to the network stack at the ethernet layer. When a TuntapPort is
associated with a tap device, it delivers whole ethernet frames to its protocol. The higher level version, tun devices,
strips off the ethernet layer before delivering data to the application. This means that a TuntapPort associated with
a tun device most commonly delivers IP datagrams to its protocol (though if your network is being used to convey
non-IP datagrams then it may deliver those instead).

Both IEthernetProtocol and IRawSocketProtocol are similar to
twisted.internet.protocol.DatagramProtocol . Datagrams, either ethernet or otherwise, are delivered to the pro-
tocol’s datagramReceived method. Conversely the protocol is associated with a transport with a write method
that accepts datagrams for injection into the network.

You can see an example of some of this functionality in the ../examples/pairudp.py example.

6.1.2 Twisted Pair: Device Configuration

Twisted Pair’s Test Suite

Certain system configuration is required before the full Twisted Pair test suite can be run. Without this setup the test
suite will lack the permission necessary to access tap and tun devices. Some tests will still run but the integration tests
which verify Twisted Pair can successfully read from and write to real devices will be skipped.

The following shell script creates two tun devices and two tap devices and grants permission to use them to whatever
user the shell script is run as. Run it to configure your system so that you can perform a complete run of the Twisted
Pair test suite.

Needs to be short enough so that with prefix and suffix, fits into 16 bytes
IDENTIFIER="twtest"

A tap device without protocol information
sudo ip tuntap add dev tap-${IDENTIFIER} mode tap user $(id -u -n) group $(id -g -n)
sudo ip link set up dev tap-${IDENTIFIER}
sudo ip addr add 172.16.0.1/24 dev tap-${IDENTIFIER}
sudo ip neigh add 172.16.0.2 lladdr de:ad:be:ef:ca:fe dev tap-${IDENTIFIER}

A tap device with protocol information
sudo ip tuntap add dev tap-${IDENTIFIER}-pi mode tap user $(id -u -n) group $(id -g -n) pi
sudo ip link set up dev tap-${IDENTIFIER}-pi
sudo ip addr add 172.16.1.1/24 dev tap-${IDENTIFIER}-pi
sudo ip neigh add 172.16.1.2 lladdr de:ad:ca:fe:be:ef dev tap-${IDENTIFIER}-pi

A tun device without protocol information
sudo ip tuntap add dev tun-${IDENTIFIER} mode tun user $(id -u -n) group $(id -g -n)
sudo ip link set up dev tun-${IDENTIFIER}

A tun device with protocol information
sudo ip tuntap add dev tun-${IDENTIFIER}-pi mode tun user $(id -u -n) group $(id -g -n) pi
sudo ip link set up dev tun-${IDENTIFIER}-pi

There are two things to keep in mind about this configuration. First, it uses addresses from the 172.16.0.0/12 private
use range. If your network is configured to use these already then running the script may cause problems for your
network. These addresses are hard-coded into the Twisted Pair test suite so this problem is not easily avoided. Second,
the changes are not persistent across reboots. If you want this network configuration to be available even after a reboot

370 Chapter 6. Twisted Pair

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.protocol.DatagramProtocol.html

Twisted Documentation, Release 16.0.0

you will need to integrate the above into your system’s init scripts somehow (the details of this for different systems is
beyond the scope of this document).

Certain platforms may also require a modification to their firewall rules in order to allow the traffic the test suite
wants to transmit. Adding firewall rules which allowing traffic destined for the addresses used by the test suite should
address this problem. If you encounter timeouts when running the Twisted Pair test suite then this may apply to you.
For example, to configure an iptables firewall to allow this traffic:

iptables -I INPUT --dest 172.16.1.1 -j ACCEPT
iptables -I INPUT --dest 172.16.2.1 -j ACCEPT

• Twisted Pair Documentation

– Twisted Pair: Tunnels And Network Taps

– Twisted Pair: Device Configuration

6.2 Examples

6.2.1 Miscellaneous

• pairudp.py - UDP implemented with a TUN/TAP device

• Developer guides: documentation on using Twisted Pair to develop your own applications

• Code Examples: short code examples using Twisted Pair

6.2. Examples 371

Twisted Documentation, Release 16.0.0

372 Chapter 6. Twisted Pair

CHAPTER 7

Twisted Web

7.1 Developer Guides

7.1.1 Overview of Twisted Web

Introduction

Twisted Web is a web application server written in pure Python, with APIs at multiple levels of abstraction to facilitate
different kinds of web programming.

Twisted Web’s Structure

373

Twisted Documentation, Release 16.0.0

When the Web Server receives a request from a Client, it creates a Request object and passes it on to the Resource
system. The Resource system dispatches to the appropriate Resource object based on what path was requested by the
client. The Resource is asked to render itself, and the result is returned to the client.

Resources

Resources are the lowest-level abstraction for applications in the Twisted web server. Each Resource is a 1:1 map-
ping with a path that is requested: you can think of a Resource as a single “page” to be rendered. The interface
for making Resources is very simple; they must have a method named render which takes a single argument,
which is the Request object (an instance of twisted.web.server.Request). This render method must return a string,
which will be returned to the web browser making the request. Alternatively, they can return a special constant,
twisted.web.server.NOT_DONE_YET , which tells the web server not to close the connection; you must then use
request.write(data) to render the page, and call request.finish() whenever you’re done.

Web programming with Twisted Web

Web programmers seeking a higher level abstraction than the Resource system should look at Nevow . Nevow is based
on ideas previously developed in Twisted, but is now maintained outside of Twisted to easy development and release
cycle pressures.

7.1.2 Configuring and Using the Twisted Web Server

Twisted Web Development

Twisted Web serves Python objects that implement the interface IResource.

374 Chapter 7. Twisted Web

https://twistedmatrix.com/documents/16.0.0/api/twisted.web.server.Request.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.server.NOT_DONE_YET.html
https://launchpad.net/nevow

Twisted Documentation, Release 16.0.0

Main Concepts

• Site Objects are responsible for creating HTTPChannel instances to parse the HTTP request, and begin the
object lookup process. They contain the root Resource, the resource which represents the URL / on the site.

• Resource objects represent a single URL segment. The IResource interface describes the methods a Resource
object must implement in order to participate in the object publishing process.

• Resource trees are arrangements of Resource objects into a Resource tree. Starting at the root Resource object,
the tree of Resource objects defines the URLs which will be valid.

• .rpy scripts are python scripts which the twisted.web static file server will execute, much like a CGI. However,
unlike CGI they must create a Resource object which will be rendered when the URL is visited.

• Resource rendering occurs when Twisted Web locates a leaf Resource object. A Resource can either return an
html string or write to the request object.

• Session objects allow you to store information across multiple requests. Each individual browser using the
system has a unique Session instance.

The Twisted Web server is started through the Twisted Daemonizer, as in:

% twistd web

7.1. Developer Guides 375

https://twistedmatrix.com/documents/16.0.0/api/twisted.web.resource.IResource.html

Twisted Documentation, Release 16.0.0

Site Objects

Site objects serve as the glue between a port to listen for HTTP requests on, and a root Resource object.

When using twistd -n web --path /foo/bar/baz , a Site object is created with a root Resource that serves
files out of the given path.

You can also create a Site instance by hand, passing it a Resource object which will serve as the root of the site:

from twisted.web import server, resource
from twisted.internet import reactor

class Simple(resource.Resource):
isLeaf = True
def render_GET(self, request):

return "<html>Hello, world!</html>"

site = server.Site(Simple())
reactor.listenTCP(8080, site)
reactor.run()

Resource objects

Resource objects represent a single URL segment of a site. During URL parsing, getChild is called on the
current Resource to produce the next Resource object.

When the leaf Resource is reached, either because there were no more URL segments or a Resource had isLeaf set
to True, the leaf Resource is rendered by calling render(request) . See “Resource Rendering” below for more
about this.

During the Resource location process, the URL segments which have already been processed and those which have
not yet been processed are available in request.prepath and request.postpath .

A Resource can know where it is in the URL tree by looking at request.prepath , a list of URL segment strings.

A Resource can know which path segments will be processed after it by looking at request.postpath .

If the URL ends in a slash, for example http://example.com/foo/bar/ , the final URL segment will be an
empty string. Resources can thus know if they were requested with or without a final slash.

Here is a simple Resource object:

from twisted.web.resource import Resource

class Hello(Resource):
isLeaf = True
def getChild(self, name, request):

if name == '':
return self

return Resource.getChild(self, name, request)

def render_GET(self, request):
return "Hello, world! I am located at %r." % (request.prepath,)

resource = Hello()

376 Chapter 7. Twisted Web

Twisted Documentation, Release 16.0.0

Resource Trees

Resources can be arranged in trees using putChild . putChild puts a Resource instance into another Resource
instance, making it available at the given path segment name:

root = Hello()
root.putChild('fred', Hello())
root.putChild('bob', Hello())

If this root resource is served as the root of a Site instance, the following URLs will all be valid:

• http://example.com/

• http://example.com/fred

• http://example.com/bob

• http://example.com/fred/

• http://example.com/bob/

.rpy scripts

Files with the extension .rpy are python scripts which, when placed in a directory served by Twisted Web, will be
executed when visited through the web.

An .rpy script must define a variable, resource , which is the Resource object that will render the request.

.rpy files are very convenient for rapid development and prototyping. Since they are executed on every web request,
defining a Resource subclass in an .rpy will make viewing the results of changes to your class visible simply by
refreshing the page:

from twisted.web.resource import Resource

class MyResource(Resource):
def render_GET(self, request):

return "<html>Hello, world!</html>"

resource = MyResource()

However, it is often a better idea to define Resource subclasses in Python modules. In order for changes in modules to
be visible, you must either restart the Python process, or reload the module:

import myresource

Comment out this line when finished debugging
reload(myresource)

resource = myresource.MyResource()

Creating a Twisted Web server which serves a directory is easy:

% twistd -n web --path /Users/dsp/Sites

Resource rendering

Resource rendering occurs when Twisted Web locates a leaf Resource object to handle a web request. A Resource’s
render method may do various things to produce output which will be sent back to the browser:

7.1. Developer Guides 377

Twisted Documentation, Release 16.0.0

• Return a string

• Call request.write("stuff") as many times as desired, then call request.finish() and return
server.NOT_DONE_YET (This is deceptive, since you are in fact done with the request, but is the correct
way to do this)

• Request a Deferred , return server.NOT_DONE_YET , and call request.write("stuff") and
request.finish() later, in a callback on the Deferred .

The Resource class, which is usually what one’s Resource classes subclass, has a convenient default implementation of
render . It will call a method named self.render_METHOD where “METHOD” is whatever HTTP method was
used to request this resource. Examples: request_GET, request_POST, request_HEAD, and so on. It is recommended
that you have your resource classes subclass Resource and implement render_METHOD methods as opposed to
render itself. Note that for certain resources, request_POST = request_GET may be desirable in case one
wants to process arguments passed to the resource regardless of whether they used GET (?foo=bar&baz=quux ,
and so forth) or POST.

Request encoders

When using a Resource , one can specify wrap it using a EncodingResourceWrapper and passing a list of encoder
factories. The encoder factories are called when a request is processed and potentially return an encoder. By default
twisted provides GzipEncoderFactory which manages standard gzip compression. You can use it this way:

from twisted.web.server import Site, GzipEncoderFactory
from twisted.web.resource import Resource, EncodingResourceWrapper
from twisted.internet import reactor

class Simple(Resource):
isLeaf = True
def render_GET(self, request):

return "<html>Hello, world!</html>"

resource = Simple()
wrapped = EncodingResourceWrapper(resource, [GzipEncoderFactory()])
site = Site(wrapped)
reactor.listenTCP(8080, site)
reactor.run()

Using compression on SSL served resources where the user can influence the content can lead to information leak, so
be careful which resources use request encoders.

Note that only encoder can be used per request: the first encoder factory returning an object will be used, so the order
in which they are specified matters.

Session

HTTP is a stateless protocol; every request-response is treated as an individual unit, distinguishable from any other
request only by the URL requested. With the advent of Cookies in the mid nineties, dynamic web servers gained the
ability to distinguish between requests coming from different browser sessions by sending a Cookie to a browser. The
browser then sends this cookie whenever it makes a request to a web server, allowing the server to track which requests
come from which browser session.

Twisted Web provides an abstraction of this browser-tracking behavior called the Session object . Calling
request.getSession() checks to see if a session cookie has been set; if not, it creates a unique session id,
creates a Session object, stores it in the Site, and returns it. If a session object already exists, the same session object
is returned. In this way, you can store data specific to the session in the session object.

378 Chapter 7. Twisted Web

https://twistedmatrix.com/documents/16.0.0/api/twisted.web.resource.Resource.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.resource.Resource.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.resource.Resource.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.resource.EncodingResourceWrapper.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.server.GzipEncoderFactory.html

Twisted Documentation, Release 16.0.0

Proxies and reverse proxies

A proxy is a general term for a server that functions as an intermediary between clients and other servers.

Twisted supports two main proxy variants: a Proxy and a ReverseProxy .

Proxy A proxy forwards requests made by a client to a destination server. Proxies typically sit on the internal
network for a client or out on the internet, and have many uses, including caching, packet filtering, auditing, and
circumventing local access restrictions to web content.

Here is an example of a simple but complete web proxy:

from twisted.web import proxy, http
from twisted.internet import reactor

class ProxyFactory(http.HTTPFactory):
def buildProtocol(self, addr):

return proxy.Proxy()

reactor.listenTCP(8080, ProxyFactory())
reactor.run()

With this proxy running, you can configure your web browser to use localhost:8080 as a proxy. After doing so,
when browsing the web all requests will go through this proxy.

Proxy inherits from http.HTTPChannel . Each client request to the proxy generates a ProxyRequest from the proxy to
the destination server on behalf of the client. ProxyRequest uses a ProxyClientFactory to create an instance of the
ProxyClient protocol for the connection. ProxyClient inherits from http.HTTPClient . Subclass ProxyRequest
to customize the way requests are processed or logged.

ReverseProxyResource A reverse proxy retrieves resources from other servers on behalf of a client. Reverse proxies
typically sit inside the server’s internal network and are used for caching, application firewalls, and load balancing.

Here is an example of a basic reverse proxy:

from twisted.internet import reactor
from twisted.web import proxy, server

7.1. Developer Guides 379

https://twistedmatrix.com/documents/16.0.0/api/twisted.web.proxy.Proxy.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.proxy.ReverseProxy.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.proxy.Proxy.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.http.HTTPChannel.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.proxy.ProxyRequest.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.proxy.ProxyClientFactory.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.proxy.ProxyClient.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.http.HTTPClient.html

Twisted Documentation, Release 16.0.0

site = server.Site(proxy.ReverseProxyResource('www.yahoo.com', 80, ''))
reactor.listenTCP(8080, site)
reactor.run()

With this reverse proxy running locally, you can visit http://localhost:8080 in your web browser, and the
reverse proxy will proxy your connection to www.yahoo.com.

In this example we use server.Site to serve a ReverseProxyResource directly. There is also a
ReverseProxy family of classes in twisted.web.proxy mirroring those of the Proxy family:

Like Proxy , ReverseProxy inherits from http.HTTPChannel . Each client request to the reverse proxy generates
a ReverseProxyRequest to the destination server. Like ProxyRequest , ReverseProxyRequest uses a ProxyClient-
Factory to create an instance of the ProxyClient protocol for the connection.

Additional examples of proxies and reverse proxies can be found in the Twisted web examples

Advanced Configuration

Non-trivial configurations of Twisted Web are achieved with Python configuration files. This is a Python snippet which
builds up a variable called application. Usually, a twisted.application.internet.TCPServer instance
will be used to make the application listen on a TCP port (80, in case direct web serving is desired), with the listener
being a twisted.web.server.Site . The resulting file can then be run with twistd -y . Alternatively a reactor object
can be used directly to make a runnable script.

The Site will wrap a Resource object – the root.

from twisted.application import internet, service
from twisted.web import static, server

root = static.File("/var/www/htdocs")
application = service.Application('web')
site = server.Site(root)
sc = service.IServiceCollection(application)
i = internet.TCPServer(80, site)
i.setServiceParent(sc)

Most advanced configurations will be in the form of tweaking the root resource object.

Adding Children

Usually, the root’s children will be based on the filesystem’s contents. It is possible to override the filesystem by
explicit putChild methods.

Here are two examples. The first one adds a /doc child to serve the documentation of the installed packages, while
the second one adds a cgi-bin directory for CGI scripts.

from twisted.internet import reactor
from twisted.web import static, server

root = static.File("/var/www/htdocs")
root.putChild("doc", static.File("/usr/share/doc"))
reactor.listenTCP(80, server.Site(root))
reactor.run()

from twisted.internet import reactor
from twisted.web import static, server, twcgi

380 Chapter 7. Twisted Web

https://twistedmatrix.com/documents/16.0.0/api/twisted.web.proxy.ReverseProxy.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.proxy.ReverseProxyRequest.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.proxy.ReverseProxyRequest.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.proxy.ProxyClientFactory.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.proxy.ProxyClientFactory.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.proxy.ProxyClient.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.server.Site.html

Twisted Documentation, Release 16.0.0

root = static.File("/var/www/htdocs")
root.putChild("cgi-bin", twcgi.CGIDirectory("/var/www/cgi-bin"))
reactor.listenTCP(80, server.Site(root))
reactor.run()

Modifying File Resources

File resources, be they root object or children thereof, have two important attributes that often need to be modified:
indexNames and processors . indexNames determines which files are treated as “index files” – served up
when a directory is rendered. processors determine how certain file extensions are treated.

Here is an example for both, creating a site where all .rpy extensions are Resource Scripts, and which renders
directories by searching for a index.rpy file.

from twisted.application import internet, service
from twisted.web import static, server, script

root = static.File("/var/www/htdocs")
root.indexNames=['index.rpy']
root.processors = {'.rpy': script.ResourceScript}
application = service.Application('web')
sc = service.IServiceCollection(application)
site = server.Site(root)
i = internet.TCPServer(80, site)
i.setServiceParent(sc)

File objects also have a method called ignoreExt . This method can be used to give extension-less URLs to users,
so that implementation is hidden. Here is an example:

from twisted.application import internet, service
from twisted.web import static, server, script

root = static.File("/var/www/htdocs")
root.ignoreExt(".rpy")
root.processors = {'.rpy': script.ResourceScript}
application = service.Application('web')
sc = service.IServiceCollection(application)
site = server.Site(root)
i = internet.TCPServer(80, site)
i.setServiceParent(sc)

Now, a URL such as /foo might be served from a Resource Script called foo.rpy , if no file by the name of foo
exists.

Virtual Hosts

Virtual hosting is done via a special resource, that should be used as the root resource – NameVirtualHost .
NameVirtualHost has an attribute named default , which holds the default website. If a different root for some
other name is desired, the addHost method should be called.

from twisted.application import internet, service
from twisted.web import static, server, vhost, script

root = vhost.NameVirtualHost()

Add a default -- htdocs

7.1. Developer Guides 381

Twisted Documentation, Release 16.0.0

root.default=static.File("/var/www/htdocs")

Add a simple virtual host -- foo.com
root.addHost("foo.com", static.File("/var/www/foo"))

Add a simple virtual host -- bar.com
root.addHost("bar.com", static.File("/var/www/bar"))

The "baz" people want to use Resource Scripts in their web site
baz = static.File("/var/www/baz")
baz.processors = {'.rpy': script.ResourceScript}
baz.ignoreExt('.rpy')
root.addHost('baz', baz)

application = service.Application('web')
sc = service.IServiceCollection(application)
site = server.Site(root)
i = internet.TCPServer(80, site)
i.setServiceParent(sc)

Advanced Techniques

Since the configuration is a Python snippet, it is possible to use the full power of Python. Here are some simple
examples:

No need for configuration of virtual hosts -- just make sure
a directory /var/vhosts/<vhost name> exists:
from twisted.web import vhost, static, server
from twisted.application import internet, service

root = vhost.NameVirtualHost()
root.default = static.File("/var/www/htdocs")
for dir in os.listdir("/var/vhosts"):

root.addHost(dir, static.File(os.path.join("/var/vhosts", dir)))

application = service.Application('web')
sc = service.IServiceCollection(application)
site = server.Site(root)
i = internet.TCPServer(80, site)
i.setServiceParent(sc)

Determine ports we listen on based on a file with numbers:
from twisted.web import vhost, static, server
from twisted.application import internet, service

root = static.File("/var/www/htdocs")

site = server.Site(root)
application = service.Application('web')
serviceCollection = service.IServiceCollection(application)

for num in map(int, open("/etc/web/ports").read().split()):
serviceCollection.addCollection(internet.TCPServer(num, site))

382 Chapter 7. Twisted Web

Twisted Documentation, Release 16.0.0

Running a Twisted Web Server

In many cases, you’ll end up repeating common usage patterns of twisted.web. In those cases you’ll probably want to
use Twisted’s pre-configured web server setup.

The easiest way to run a Twisted Web server is with the Twisted Daemonizer. For example, this command will run a
web server which serves static files from a particular directory:

% twistd web --path /path/to/web/content

If you just want to serve content from your own home directory, the following will do:

% twistd web --path ~/public_html/

You can stop the server at any time by going back to the directory you started it in and running the command:

% kill `cat twistd.pid`

Some other configuration options are available as well:

• --port : Specify the port for the web server to listen on. This defaults to 8080.

• --logfile : Specify the path to the log file.

The full set of options that are available can be seen with:

% twistd web --help

Serving Flat HTML

Twisted Web serves flat HTML files just as it does any other flat file.

Resource Scripts

A Resource script is a Python file ending with the extension .rpy , which is required to create an instance of a
(subclass of a) twisted.web.resource.Resource .

Resource scripts have 3 special variables:

• __file__ : The name of the .rpy file, including the full path. This variable is automatically defined and
present within the namespace.

• registry : An object of class static.Registry . It can be used to access and set persistent data keyed by a class.

• resource : The variable which must be defined by the script and set to the resource instance that will be used
to render the page.

A very simple Resource Script might look like:

from twisted.web import resource
class MyGreatResource(resource.Resource):

def render_GET(self, request):
return "<html>foo</html>"

resource = MyGreatResource()

A slightly more complicated resource script, which accesses some persistent data, might look like:

7.1. Developer Guides 383

https://twistedmatrix.com/documents/16.0.0/api/twisted.web.resource.Resource.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.static.Registry.html

Twisted Documentation, Release 16.0.0

from twisted.web import resource
from SillyWeb import Counter

counter = registry.getComponent(Counter)
if not counter:

registry.setComponent(Counter, Counter())
counter = registry.getComponent(Counter)

class MyResource(resource.Resource):
def render_GET(self, request):

counter.increment()
return "you are visitor %d" % counter.getValue()

resource = MyResource()

This is assuming you have the SillyWeb.Counter module, implemented something like the following:

class Counter:

def __init__(self):
self.value = 0

def increment(self):
self.value += 1

def getValue(self):
return self.value

Web UIs

The Nevow framework, available as part of the Quotient project, is an advanced system for giving Web UIs to your
application. Nevow uses Twisted Web but is not itself part of Twisted.

Spreadable Web Servers

One of the most interesting applications of Twisted Web is the distributed webserver; multiple servers can all answer
requests on the same port, using the twisted.spread package for “spreadable” computing. In two different directories,
run the commands:

% twistd web --user
% twistd web --personal [other options, if you desire]

Once you’re running both of these instances, go to http://localhost:8080/your_username.twistd/
– you will see the front page from the server you created with the --personal option. What’s happening here is
that the request you’ve sent is being relayed from the central (User) server to your own (Personal) server, over a PB
connection. This technique can be highly useful for small “community” sites; using the code that makes this demo
work, you can connect one HTTP port to multiple resources running with different permissions on the same machine,
on different local machines, or even over the internet to a remote site.

By default, a personal server listens on a UNIX socket in the owner’s home directory. The --port option can
be used to make it listen on a different address, such as a TCP or SSL server or on a UNIX server in a different
location. If you use this option to make a personal server listen on a different address, the central (User) server
won’t be able to find it, but a custom server which uses the same APIs as the central server might. Another use of
the --port option is to make the UNIX server robust against system crashes. If the server crashes and the UNIX
socket is left on the filesystem, the personal server will not be able to restart until it is removed. However, if --port

384 Chapter 7. Twisted Web

https://launchpad.net/nevow
https://launchpad.net/quotient
https://twistedmatrix.com/documents/16.0.0/api/twisted.spread.html

Twisted Documentation, Release 16.0.0

unix:/home/username/.twistd-web-pb:wantPID=1 is supplied when creating the personal server, then
a lockfile will be used to keep track of whether the server socket is in use and automatically delete it when it is not.

Serving PHP/Perl/CGI

Everything related to CGI is located in the twisted.web.twcgi , and it’s here you’ll find the classes that you
need to subclass in order to support the language of your (or somebody elses) taste. You’ll also need to create your
own kind of resource if you are using a non-unix operating system (such as Windows), or if the default resources has
wrong pathnames to the parsers.

The following snippet is a .rpy that serves perl-files. Look at twisted.web.twcgi for more examples regarding
twisted.web and CGI.

from twisted.web import static, twcgi

class PerlScript(twcgi.FilteredScript):
filter = '/usr/bin/perl' # Points to the perl parser

resource = static.File("/perlsite") # Points to the perl website
resource.processors = {".pl": PerlScript} # Files that end with .pl will be

processed by PerlScript
resource.indexNames = ['index.pl']

Serving WSGI Applications

WSGI is the Web Server Gateway Interface. It is a specification for web servers and application servers to communicate
with Python web applications. All modern Python web frameworks support the WSGI interface.

The easiest way to get started with WSGI application is to use the twistd command:

% twistd -n web --wsgi=helloworld.application

This assumes that you have a WSGI application called application in your helloworld module/package, which might
look like this:

def application(environ, start_response):
"""Basic WSGI Application"""
start_response('200 OK', [('Content-type','text/plain')])
return ['Hello World!']

The above setup will be suitable for many applications where all that is needed is to server the WSGI application
at the site’s root. However, for greater control, Twisted provides support for using WSGI applications as resources
twisted.web.wsgi.WSGIResource .

Here is an example of a WSGI application being served as the root resource for a site, in the following tac file:

from twisted.web import server
from twisted.web.wsgi import WSGIResource
from twisted.python.threadpool import ThreadPool
from twisted.internet import reactor
from twisted.application import service, strports

Create and start a thread pool,
wsgiThreadPool = ThreadPool()
wsgiThreadPool.start()

ensuring that it will be stopped when the reactor shuts down

7.1. Developer Guides 385

http://wsgi.org

Twisted Documentation, Release 16.0.0

reactor.addSystemEventTrigger('after', 'shutdown', wsgiThreadPool.stop)

def application(environ, start_response):
"""A basic WSGI application"""
start_response('200 OK', [('Content-type','text/plain')])
return ['Hello World!']

Create the WSGI resource
wsgiAppAsResource = WSGIResource(reactor, wsgiThreadPool, application)

Hooks for twistd
application = service.Application('Twisted.web.wsgi Hello World Example')
server = strports.service('tcp:8080', server.Site(wsgiAppAsResource))
server.setServiceParent(application)

This can then be run like any other .tac file:

% twistd -ny myapp.tac

Because of the synchronous nature of WSGI, each application call (for each request) is called within a thread, and the
result is written back to the web server. For this, a twisted.python.threadpool.ThreadPool instance is
used.

Using VHostMonster

It is common to use one server (for example, Apache) on a site with multiple names which then uses reverse proxy
(in Apache, via mod_proxy) to different internal web servers, possibly on different machines. However, naive
configuration causes miscommunication: the internal server firmly believes it is running on “internal-name:port” , and
will generate URLs to that effect, which will be completely wrong when received by the client.

While Apache has the ProxyPassReverse directive, it is really a hack and is nowhere near comprehensive enough.
Instead, the recommended practice in case the internal web server is Twisted Web is to use VHostMonster.

From the Twisted side, using VHostMonster is easy: just drop a file named (for example) vhost.rpy containing the
following:

from twisted.web import vhost
resource = vhost.VHostMonsterResource()

Make sure the web server is configured with the correct processors for the rpy extensions (the web server twistd
web --path generates by default is so configured).

From the Apache side, instead of using the following ProxyPass directive:

<VirtualHost ip-addr>
ProxyPass / http://localhost:8538/
ServerName example.com
</VirtualHost>

Use the following directive:

<VirtualHost ip-addr>
ProxyPass / http://localhost:8538/vhost.rpy/http/example.com:80/
ServerName example.com
</VirtualHost>

Here is an example for Twisted Web’s reverse proxy:

386 Chapter 7. Twisted Web

Twisted Documentation, Release 16.0.0

from twisted.application import internet, service
from twisted.web import proxy, server, vhost
vhostName = 'example.com'
reverseProxy = proxy.ReverseProxyResource('internal', 8538,

'/vhost.rpy/http/'+vhostName+'/')
root = vhost.NameVirtualHost()
root.addHost(vhostName, reverseProxy)
site = server.Site(root)
application = service.Application('web-proxy')
sc = service.IServiceCollection(application)
i = internet.TCPServer(80, site)
i.setServiceParent(sc)

Rewriting URLs

Sometimes it is convenient to modify the content of the Request object before passing it on. Because this is most
often used to rewrite either the URL, the similarity to Apache’s mod_rewrite has inspired the twisted.web.rewrite
module. Using this module is done via wrapping a resource with a twisted.web.rewrite.RewriterResource which then
has rewrite rules. Rewrite rules are functions which accept a request object, and possible modify it. After all rewrite
rules run, the child resolution chain continues as if the wrapped resource, rather than the RewriterResource , was the
child.

Here is an example, using the only rule currently supplied by Twisted itself:

default_root = rewrite.RewriterResource(default, rewrite.tildeToUsers)

This causes the URL /~foo/bar.html to be treated like /users/foo/bar.html . If done after setting de-
fault’s users child to a distrib.UserDirectory , it gives a configuration similar to the classical configuration of web
server, common since the first NCSA servers.

Knowing When We’re Not Wanted

Sometimes it is useful to know when the other side has broken the connection. Here is an example which does that:

from twisted.web.resource import Resource
from twisted.web import server
from twisted.internet import reactor
from twisted.python.util import println

class ExampleResource(Resource):

def render_GET(self, request):
request.write("hello world")
d = request.notifyFinish()
d.addCallback(lambda _: println("finished normally"))
d.addErrback(println, "error")
reactor.callLater(10, request.finish)
return server.NOT_DONE_YET

resource = ExampleResource()

This will allow us to run statistics on the log-file to see how many users are frustrated after merely 10 seconds.

7.1. Developer Guides 387

https://twistedmatrix.com/documents/16.0.0/api/twisted.web.server.Request.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.rewrite.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.rewrite.RewriterResource.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.rewrite.RewriterResource.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.distrib.UserDirectory.html

Twisted Documentation, Release 16.0.0

As-Is Serving

Sometimes, you want to be able to send headers and status directly. While you can do this with a ResourceScript , an
easier way is to use ASISProcessor . Use it by, for example, adding it as a processor for the .asis extension. Here is
a sample file:

HTTP/1.0 200 OK
Content-Type: text/html

Hello world

7.1.3 Web Application Development

Code layout

The development of a Twisted Web application should be orthogonal to its deployment. This means is that if you are
developing a web application, it should be a resource with children, and internal links. Some of the children might use
Nevow , some might be resources manually using .write , and so on. Regardless, the code should be in a Python
module, or package, outside the web tree.

You will probably want to test your application as you develop it. There are many ways to test, including dropping an
.rpy which looks like:

from mypackage import toplevel
resource = toplevel.Resource(file="foo/bar", color="blue")

into a directory, and then running:

% twistd web --path=/directory

You can also write a Python script like:

#!/usr/bin/env python

from twisted.web import server
from twisted.internet import reactor
from mypackage import toplevel

reactor.listenTCP(8080,
server.Site(toplevel.Resource(file="foo/bar", color="blue")))

reactor.run()

Web application deployment

Which one of these development strategies you use is not terribly important, since (and this is the important part)
deployment is orthogonal . Later, when you want users to actually use your code, you should worry about what to do
– or rather, don’t. Users may have widely different needs. Some may want to run your code in a different process, so
they’ll use distributed web (twisted.web.distrib). Some may be using the twisted-web Debian package, and will
drop in:

% cat > /etc/local.d/99addmypackage.py
from mypackage import toplevel
default.putChild("mypackage", toplevel.Resource(file="foo/bar", color="blue"))
^D

388 Chapter 7. Twisted Web

https://twistedmatrix.com/documents/16.0.0/api/twisted.web.script.ResourceScript.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.static.ASISProcessor.html
https://launchpad.net/nevow
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.distrib.html

Twisted Documentation, Release 16.0.0

If you want to be friendly to your users, you can supply many examples in your package, like the above .rpy and the
Debian-package drop-in. But the ultimate friendliness is to write a useful resource which does not have deployment
assumptions built in.

Understanding resource scripts (.rpy files)

Twisted Web is not PHP – it has better tools for organizing code Python modules and packages, so use them. In
PHP, the only tool for organizing code is a web page, which leads to silly things like PHP pages full of functions
that other pages import, and so on. If you were to write your code this way with Twisted Web, you would do web
development using many .rpy files, all importing some Python module. This is a bad idea – it mashes deployment
with development, and makes sure your users will be tied to the file-system.

We have .rpy s because they are useful and necessary. But using them incorrectly leads to horribly unmaintainable
applications. The best way to ensure you are using them correctly is to not use them at all, until you are on your final
deployment stages. You should then find your .rpy files will be less than 10 lines, because you will not have more
than 10 lines to write.

7.1.4 HTML Templating with twisted.web.template

A Very Quick Introduction To Templating In Python

HTML templating is the process of transforming a template document (one which describes style and structure, but
does not itself include any content) into some HTML output which includes information about objects in your ap-
plication. There are many, many libraries for doing this in Python: to name a few, jinja2 , django templates , and
clearsilver . You can easily use any of these libraries in your Twisted Web application, either by running them as
WSGI applications or by calling your preferred templating system’s APIs to produce their output as strings, and then
writing those strings to Request.write .

Before we begin explaining how to use it, I’d like to stress that you don’t need to use Twisted’s templating system if
you prefer some other way to generate HTML. Use it if it suits your personal style or your application, but feel free
to use other things. Twisted includes templating for its own use, because the twisted.web server needs to produce
HTML in various places, and we didn’t want to add another large dependency for that. Twisted is not in any way
incompatible with other systems, so that has nothing to do with the fact that we use our own.

twisted.web.template - Why And How you Might Want to Use It

Twisted includes a templating system, twisted.web.template . This can be convenient for Twisted applications that
want to produce some basic HTML for a web interface without an additional dependency.

twisted.web.template also includes support for Deferred s, so you can incrementally render the output of
a page based on the results of Deferred s that your application has returned. This feature is fairly unique among
templating libraries.

In twisted.web.template , templates are XHTML files which also contain a special namespace for indicating dynamic
portions of the document. For example:

template-1.xml

<html xmlns:t="http://twistedmatrix.com/ns/twisted.web.template/0.1">
<body>

<div t:render="header" />
<div id="content">
<p>Content goes here.</p>

</div>
<div t:render="footer" />

7.1. Developer Guides 389

http://jinja.pocoo.org/
http://docs.djangoproject.com/en/dev/ref/templates/
http://www.clearsilver.net/
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.http.Request.write.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.template.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.template.html

Twisted Documentation, Release 16.0.0

</body>
</html>

The basic unit of templating is twisted.web.template.Element . An Element is given a way of loading a bit of markup
like the above example, and knows how to correlate render attributes within that markup to Python methods exposed
with twisted.web.template.renderer :

element_1.py

from twisted.web.template import Element, renderer, XMLFile
from twisted.python.filepath import FilePath

class ExampleElement(Element):
loader = XMLFile(FilePath('template-1.xml'))

@renderer
def header(self, request, tag):

return tag('Header.')

@renderer
def footer(self, request, tag):

return tag('Footer.')

In order to combine the two, we must render the element. For this simple example, we can use the flattenString API,
which will convert a single template object - such as an Element - into a Deferred which fires with a single string, the
HTML output of the rendering process.

render_1.py

from twisted.web.template import flattenString
from element_1 import ExampleElement
def renderDone(output):

print output
flattenString(None, ExampleElement()).addCallback(renderDone)

This short program cheats a little bit; we know that there are no Deferred s in the template which require the reactor
to eventually fire; therefore, we can simply add a callback which outputs the result. Also, none of the renderer
functions require the request object, so it’s acceptable to pass None through here. (The ‘request’ object here is
used only to relay information about the rendering process to each renderer, so you may always use whatever object
makes sense for your application. Note, however, that renderers from library code may require an IRequest .)

If you run it yourself, you can see that it produces the following output:

output-1.html

<html>
<body>

<div>Header.</div>
<div id="content">
<p>Content goes here.</p>

</div>
<div>Footer.</div>

</body>
</html>

The third parameter to a renderer method is a Tag object which represents the XML element with the t:render
attribute in the template. Calling a Tag adds children to the element in the DOM, which may be strings, more Tag s,
or other renderables such as Element s. For example, to make the header and footer bold:

element_2.py

390 Chapter 7. Twisted Web

https://twistedmatrix.com/documents/16.0.0/api/twisted.web.template.Element.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.template.renderer.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.template.flattenString.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.template.Element.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.iweb.IRequest.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.template.Tag.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.template.Tag.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.template.Tag.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.template.Element.html

Twisted Documentation, Release 16.0.0

from twisted.web.template import Element, renderer, XMLFile, tags
from twisted.python.filepath import FilePath

class ExampleElement(Element):
loader = XMLFile(FilePath('template-1.xml'))

@renderer
def header(self, request, tag):

return tag(tags.b('Header.'))

@renderer
def footer(self, request, tag):

return tag(tags.b('Footer.'))

Rendering this in a similar way to the first example would produce:

output-2.html

<html>
<body>

<div>Header.</div>
<div id="content">
<p>Content goes here.</p>

</div>
<div>Footer.</div>

</body>
</html>

In addition to adding children, call syntax can be used to set attributes on a tag. For example, to change the id on the
div while adding children:

element_3.py

from twisted.web.template import Element, renderer, XMLFile, tags
from twisted.python.filepath import FilePath

class ExampleElement(Element):
loader = XMLFile(FilePath('template-1.xml'))

@renderer
def header(self, request, tag):

return tag(tags.p('Header.'), id='header')

@renderer
def footer(self, request, tag):

return tag(tags.p('Footer.'), id='footer')

And this would produce the following page:

output-3.html

<html>
<body>

<div id="header"><p>Header.</p></div>
<div id="content">
<p>Content goes here.</p>

</div>
<div id="footer"><p>Footer.</p></div>

</body>
</html>

7.1. Developer Guides 391

Twisted Documentation, Release 16.0.0

Calling a tag mutates it, it and returns the tag itself, so you can pass it forward and call it multiple times if you have
multiple children or attributes to add to it. twisted.web.template also exposes some convenient objects for building
more complex markup structures from within renderer methods in the tags object. In the examples above, we’ve
only used tags.p and tags.b , but there should be a tags.x for each x which is a valid HTML tag. There may
be some omissions, but if you find one, please feel free to file a bug.

Template Attributes

t:attr tags allow you to set HTML attributes (like href in an <a href="...) on an enclosing element.

Slots

t:slot tags allow you to specify “slots” which you can conveniently fill with multiple pieces of data straight from
your Python program.

The following example demonstrates both t:attr and t:slot in action. Here we have a layout which displays a
person’s profile on your snazzy new Twisted-powered social networking site. We use the t:attr tag to drop in the
“src” attribute on the profile picture, where the actual value of src attribute gets specified by a t:slot tag within the
t:attr tag. Confused? It should make more sense when you see the code:

slots-attributes-1.xml

<div xmlns:t="http://twistedmatrix.com/ns/twisted.web.template/0.1"
t:render="person_profile"
class="profile">

<t:attr name="src"><t:slot name="profile_image_url" /></t:attr>
<p><t:slot name="person_name" /></p>
</div>

slots_attributes_1.py

from twisted.web.template import Element, renderer, XMLFile
from twisted.python.filepath import FilePath

class ExampleElement(Element):
loader = XMLFile(FilePath('slots-attributes-1.xml'))

@renderer
def person_profile(self, request, tag):

Note how convenient it is to pass these attributes in!
tag.fillSlots(person_name='Luke',

profile_image_url='http://example.com/user.png')
return tag

slots-attributes-output.html

<div class="profile">

<p>Luke</p>
</div>

Iteration

Often, you will have a sequence of things, and want to render each of them, repeating a part of the template for each
one. This can be done by cloning tag in your renderer:

392 Chapter 7. Twisted Web

https://twistedmatrix.com/documents/16.0.0/api/twisted.web.template.html

Twisted Documentation, Release 16.0.0

iteration-1.xml

<ul xmlns:t="http://twistedmatrix.com/ns/twisted.web.template/0.1">
<li t:render="widgets"><t:slot name="widgetName"/>

iteration-1.py

from twisted.web.template import Element, renderer, XMLFile, flattenString
from twisted.python.filepath import FilePath

class WidgetsElement(Element):
loader = XMLFile(FilePath('iteration-1.xml'))

widgetData = ['gadget', 'contraption', 'gizmo', 'doohickey']

@renderer
def widgets(self, request, tag):

for widget in self.widgetData:
yield tag.clone().fillSlots(widgetName=widget)

def printResult(result):
print result

flattenString(None, WidgetsElement()).addCallback(printResult)

iteration-output-1.xml

gadgetcontraptiongizmodoohickey

This renderer works because a renderer can return anything that can be rendered, not just tag . In this case, we define
a generator, which returns a thing that is iterable. We also could have returned a list . Anything that is iterable will
be rendered by twisted.web.template rendering each item in it. In this case, each item is a copy of the tag the renderer
received, each filled with the name of a widget.

Sub-views

Another common pattern is to delegate the rendering logic for a small part of the page to a separate Element .
For example, the widgets from the iteration example above might be more complicated to render. You can define an
Element subclass which can render a single widget. The renderer method on the container can then yield instances
of this new Element subclass.

subviews-1.xml

<ul xmlns:t="http://twistedmatrix.com/ns/twisted.web.template/0.1">
<li t:render="widgets">

subviews-1.py

from twisted.web.template import (
XMLFile, TagLoader, Element, renderer, flattenString)

from twisted.python.filepath import FilePath

class WidgetsElement(Element):
loader = XMLFile(FilePath('subviews-1.xml'))

7.1. Developer Guides 393

https://twistedmatrix.com/documents/16.0.0/api/twisted.web.template.html

Twisted Documentation, Release 16.0.0

widgetData = ['gadget', 'contraption', 'gizmo', 'doohickey']

@renderer
def widgets(self, request, tag):

for widget in self.widgetData:
yield WidgetElement(TagLoader(tag), widget)

class WidgetElement(Element):
def __init__(self, loader, name):

Element.__init__(self, loader)
self._name = name

@renderer
def name(self, request, tag):

return tag(self._name)

def printResult(result):
print result

flattenString(None, WidgetsElement()).addCallback(printResult)

subviews-output-1.xml

gadgetcontraptiongizmodoohickey

TagLoader lets the portion of the overall template related to widgets be re-used for WidgetElement , which is
otherwise a normal Element subclass not much different from WidgetsElement . Notice that the name renderer
on the span tag in this template is satisfied from WidgetElement , not WidgetsElement .

Transparent

Note how renderers, slots and attributes require you to specify a renderer on some outer HTML element. What if you
don’t want to be forced to add an element to your DOM just to drop some content into it? Maybe it messes with your
layout, and you can’t get it to work in IE with that extra div tag? Perhaps you need t:transparent , which allows
you to drop some content in without any surrounding “container” tag. For example:

transparent-1.xml

<div xmlns:t="http://twistedmatrix.com/ns/twisted.web.template/0.1">
<!-- layout decision - these things need to be *siblings* -->
<t:transparent t:render="renderer1" />
<t:transparent t:render="renderer2" />
</div>

transparent_element.py

from twisted.web.template import Element, renderer, XMLFile
from twisted.python.filepath import FilePath

class ExampleElement(Element):
loader = XMLFile(FilePath('transparent-1.xml'))

@renderer
def renderer1(self, request, tag):

return tag("hello")

394 Chapter 7. Twisted Web

Twisted Documentation, Release 16.0.0

@renderer
def renderer2(self, request, tag):

return tag("world")

transparent-output.html

<div>
<!-- layout decision - these things need to be *siblings* -->
hello
world
</div>

Quoting

twisted.web.template will quote any strings that place into the DOM. This provides protection against XSS attacks
, in addition to just generally making it easy to put arbitrary strings onto a web page, without worrying about what
they might have in them. This can easily be demonstrated with an element using the same template from our earlier
examples. Here’s an element that returns some “special” characters in HTML (‘<’, ‘>’, and ‘”’, which is special in
attribute values):

quoting_element.py

from twisted.web.template import Element, renderer, XMLFile
from twisted.python.filepath import FilePath

class ExampleElement(Element):
loader = XMLFile(FilePath('template-1.xml'))

@renderer
def header(self, request, tag):

return tag('<<<Header>>>!')

@renderer
def footer(self, request, tag):

return tag('>>>"Footer!"<<<', id='<"fun">')

Note that they are all safely quoted in the output, and will appear in a web browser just as you returned them from
your Python method:

quoting-output.html

<html>
<body>

<div><<<Header>>>!</div>
<div id="content">
<p>Content goes here.</p>

</div>
<div id="<"fun">">>>>"Footer!"<<<</div>

</body>
</html>

Deferreds

Finally, a simple demonstration of Deferred support, the unique feature of twisted.web.template . Simply put, any
renderer may return a Deferred which fires with some template content instead of the template content itself. As
shown above, flattenString will return a Deferred that fires with the full content of the string. But if there’s a lot of

7.1. Developer Guides 395

https://twistedmatrix.com/documents/16.0.0/api/twisted.web.template.html
http://en.wikipedia.org/wiki/Cross-site_scripting
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.template.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.template.flattenString.html

Twisted Documentation, Release 16.0.0

content, you might not want to wait before starting to send some of it to your HTTP client: for that case, you can use
flatten . It’s difficult to demonstrate this directly in a browser-based application; unless you insert very long delays
before firing your Deferreds, it just looks like your browser is instantly displaying everything. Here’s an example that
just prints out some HTML template, with markers inserted for where certain events happen:

wait_for_it.py

import sys
from twisted.web.template import XMLString, Element, renderer, flatten
from twisted.internet.defer import Deferred

sample = XMLString(
"""
<div xmlns:t="http://twistedmatrix.com/ns/twisted.web.template/0.1">
Before waiting ...

... after waiting.
</div>
""")

class WaitForIt(Element):
def __init__(self):

Element.__init__(self, loader=sample)
self.deferred = Deferred()

@renderer
def wait(self, request, tag):

return self.deferred.addCallback(
lambda aValue: tag("A value: " + repr(aValue)))

def done(ignore):
print("[[[Deferred fired.]]]")

print('[[[Rendering the template.]]]')
it = WaitForIt()
flatten(None, it, sys.stdout.write).addCallback(done)
print('[[[In progress... now firing the Deferred.]]]')
it.deferred.callback("<value>")
print('[[[All done.]]]')

If you run this example, you should get the following output:

waited-for-it.html

[[[Rendering the template.]]]
<div>

Before waiting ...
[[[In progress... now firing the Deferred.]]]

A value: '<value>'
... after waiting.
</div>[[[Deferred fired.]]]

[[[All done.]]]

This demonstrates that part of the output (everything up to “[[[In progress... ”) is written out immediately
as it’s rendered. But once it hits the Deferred, WaitForIt ‘s rendering needs to pause until .callback(...) is
called on that Deferred. You can see that no further output is produced until the message indicating that the Deferred
is being fired is complete. By returning Deferreds and using flatten , you can avoid buffering large amounts of data.

396 Chapter 7. Twisted Web

https://twistedmatrix.com/documents/16.0.0/api/twisted.web.template.flatten.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.template.flatten.html

Twisted Documentation, Release 16.0.0

A Brief Note on Formats and DOCTYPEs

The goal of twisted.web.template is to emit both valid HTML or XHTML . However, in order to get the
maximally standards-compliant output format you desire, you have to know which one you want, and take a few
simple steps to emit it correctly. Many browsers will probably work with most output if you ignore this section
entirely, but the HTML specification recommends that you specify an appropriate DOCTYPE .

As a DOCTYPE declaration in your template would describe the template itself, rather than its output, it won’t be
included in your output. If you wish to annotate your template output with a DOCTYPE, you will have to write it to
the browser out of band. One way to do this would be to simply do request.write(’<!DOCTYPE html>\n’)
when you are ready to begin emitting your response. The same goes for an XML DOCTYPE declaration.

twisted.web.template will remove the xmlns attributes used to declare the
http://twistedmatrix.com/ns/twisted.web.template/0.1 namespace, but it will not modify
other namespace declaration attributes. Therefore if you wish to serialize in HTML format, you should not use other
namespaces; if you wish to serialize to XML, feel free to insert any namespace declarations that are appropriate, and
they will appear in your output.

Note: This relaxed approach is correct in many cases. However, in certain contexts - especially <script> and <style>
tags - quoting rules differ in significant ways between HTML and XML, and between different browsers’ parsers in
HTML. If you want to generate dynamic content inside a script or stylesheet, the best option is to load the resource
externally so you don’t have to worry about quoting rules. The second best option is to strictly configure your content-
types and DOCTYPE declarations for XML, whose quoting rules are simple and compatible with the approach that
twisted.web.template takes. And, please remember: regardless of how you put it there, any user input placed
inside a <script> or <style> tag is a potential security issue.

A Bit of History

Those of you who used Divmod Nevow may notice some similarities. twisted.web.template is in fact de-
rived from the latest version of Nevow, but includes only the latest components from Nevow’s rendering pipeline,
and does not have any of the legacy compatibility layers that Nevow grew over time. This should make using
twisted.web.template a similar experience for many long-time users of Twisted who have previously used
Nevow for its twisted-friendly templating, but more straightforward for new users.

7.1.5 Creating XML-RPC Servers and Clients with Twisted

Introduction

XML-RPC is a simple request/reply protocol that runs over HTTP. It is simple, easy to implement and sup-
ported by most programming languages. Twisted’s XML-RPC support is implemented using the‘xmlrpclib
<http://docs.python.org/library/xmlrpclib.html>‘_ library that is included with Python 2.2 and later.

Creating a XML-RPC server

Making a server is very easy - all you need to do is inherit from twisted.web.xmlrpc.XMLRPC . You then create
methods beginning with xmlrpc_ . The methods’ arguments determine what arguments it will accept from XML-
RPC clients. The result is what will be returned to the clients.

Methods published via XML-RPC can return all the basic XML-RPC types, such as strings, lists and so on (just return a
regular python integer, etc). They can also raise exceptions or return Failure instances to indicate an error has occurred,
or Binary , Boolean or DateTime instances (all of these are the same as the respective classes in xmlrpclib. In

7.1. Developer Guides 397

http://whatwg.org/html
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-xhtml-syntax.html#the-xhtml-syntax
http://www.whatwg.org/specs/web-apps/current-work/multipage/syntax.html#the-doctype
http://www.xmlrpc.com
http://docs.python.org/library/xmlrpclib.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.xmlrpc.XMLRPC.html

Twisted Documentation, Release 16.0.0

addition, XML-RPC published methods can return Deferred instances whose results are one of the above. This allows
you to return results that can’t be calculated immediately, such as database queries. See the Deferred documentation
for more details.

XMLRPC instances are Resource objects, and they can thus be published using a Site. The following example has two
methods published via XML-RPC, add(a, b) and echo(x) .

from twisted.web import xmlrpc, server

class Example(xmlrpc.XMLRPC):
"""
An example object to be published.
"""

def xmlrpc_echo(self, x):
"""
Return all passed args.
"""
return x

def xmlrpc_add(self, a, b):
"""
Return sum of arguments.
"""
return a + b

def xmlrpc_fault(self):
"""
Raise a Fault indicating that the procedure should not be used.
"""
raise xmlrpc.Fault(123, "The fault procedure is faulty.")

if __name__ == '__main__':
from twisted.internet import reactor
r = Example()
reactor.listenTCP(7080, server.Site(r))
reactor.run()

After we run this command, we can connect with a client and send commands to the server:

>>> import xmlrpclib
>>> s = xmlrpclib.Server('http://localhost:7080/')
>>> s.echo("lala")
'lala'
>>> s.add(1, 2)
3
>>> s.fault()
Traceback (most recent call last):
...
xmlrpclib.Fault: <Fault 123: 'The fault procedure is faulty.'>
>>>

If the Request object is needed by an xmlrpc_* method, it can be made available using the
twisted.web.xmlrpc.withRequest decorator. When using this decorator, the method will be passed the request object
as the first argument, before any XML-RPC parameters. For example:

from twisted.web.xmlrpc import XMLRPC, withRequest
from twisted.web.server import Site

class Example(XMLRPC):

398 Chapter 7. Twisted Web

https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.xmlrpc.XMLRPC.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.server.Request.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.xmlrpc.withRequest.html

Twisted Documentation, Release 16.0.0

@withRequest
def xmlrpc_headerValue(self, request, headerName):

return request.requestHeaders.getRawHeaders(headerName)

if __name__ == '__main__':
from twisted.internet import reactor
reactor.listenTCP(7080, Site(Example()))
reactor.run()

XML-RPC resources can also be part of a normal Twisted web server, using resource scripts. The following is an
example of such a resource script:

xmlquote.rpy

from twisted.web import xmlrpc
import os

def getQuote():
return "What are you talking about, William?"

class Quoter(xmlrpc.XMLRPC):

def xmlrpc_quote(self):
return getQuote()

resource = Quoter()

Using XML-RPC sub-handlers

XML-RPC resource can be nested so that one handler calls another if a method with a given prefix is called. For
example, to add support for an XML-RPC method date.time() to the Example class, you could do the following:

import time
from twisted.web import xmlrpc, server

class Example(xmlrpc.XMLRPC):
"""
An example object to be published.
"""

def xmlrpc_echo(self, x):
"""
Return all passed args.
"""
return x

def xmlrpc_add(self, a, b):
"""
Return sum of arguments.
"""
return a + b

class Date(xmlrpc.XMLRPC):
"""
Serve the XML-RPC 'time' method.
"""

7.1. Developer Guides 399

Twisted Documentation, Release 16.0.0

def xmlrpc_time(self):
"""
Return UNIX time.
"""
return time.time()

if __name__ == '__main__':
from twisted.internet import reactor
r = Example()
date = Date()
r.putSubHandler('date', date)
reactor.listenTCP(7080, server.Site(r))
reactor.run()

By default, a period (‘.’) separates the prefix from the method name, but you can use a different character by overriding
the XMLRPC.separator data member in your base XML-RPC server. XML-RPC servers may be nested to arbitrary
depths using this method.

Using your own procedure getter

Sometimes, you want to implement your own policy of getting the end implementation. E.g. just like sub-handlers
you want to divide the implementations into separate classes but may not want to introduce XMLRPC.separator
in the procedure name. In such cases just override the lookupProcedure(self, procedurePath) method
and return the correct callable. Raise twisted.web.xmlrpc.NoSuchFunction otherwise.

xmlrpc-customized.py

from twisted.web import xmlrpc, server

class EchoHandler:

def echo(self, x):
"""
Return all passed args
"""
return x

class AddHandler:

def add(self, a, b):
"""
Return sum of arguments.
"""
return a + b

class Example(xmlrpc.XMLRPC):
"""
An example of using you own policy to fetch the handler
"""

def __init__(self):
xmlrpc.XMLRPC.__init__(self)
self._addHandler = AddHandler()

400 Chapter 7. Twisted Web

https://twistedmatrix.com/documents/16.0.0/api/twisted.web.xmlrpc.NoSuchFunction.html

Twisted Documentation, Release 16.0.0

self._echoHandler = EchoHandler()

#We keep a dict of all relevant
#procedure names and callable.
self._procedureToCallable = {

'add':self._addHandler.add,
'echo':self._echoHandler.echo

}

def lookupProcedure(self, procedurePath):
try:

return self._procedureToCallable[procedurePath]
except KeyError, e:

raise xmlrpc.NoSuchFunction(self.NOT_FOUND,
"procedure %s not found" % procedurePath)

def listProcedures(self):
"""
Since we override lookupProcedure, its suggested to override
listProcedures too.
"""
return ['add', 'echo']

if __name__ == '__main__':
from twisted.internet import reactor
r = Example()
reactor.listenTCP(7080, server.Site(r))
reactor.run()

Adding XML-RPC Introspection support

XML-RPC has an informal IntrospectionAPI that specifies three methods in a system sub-handler which allow a
client to query a server about the server’s API. Adding Introspection support to the Example class is easy using the
XMLRPCIntrospection class:

from twisted.web import xmlrpc, server

class Example(xmlrpc.XMLRPC):
"""An example object to be published."""

def xmlrpc_echo(self, x):
"""Return all passed args."""
return x

xmlrpc_echo.signature = [['string', 'string'],
['int', 'int'],
['double', 'double'],
['array', 'array'],
['struct', 'struct']]

def xmlrpc_add(self, a, b):
"""Return sum of arguments."""
return a + b

xmlrpc_add.signature = [['int', 'int', 'int'],

7.1. Developer Guides 401

http://tldp.org/HOWTO/XML-RPC-HOWTO/xmlrpc-howto-interfaces.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.xmlrpc.XMLRPCIntrospection.html

Twisted Documentation, Release 16.0.0

['double', 'double', 'double']]
xmlrpc_add.help = "Add the arguments and return the sum."

if __name__ == '__main__':
from twisted.internet import reactor
r = Example()
xmlrpc.addIntrospection(r)
reactor.listenTCP(7080, server.Site(r))
reactor.run()

Note the method attributes help and signature which are used by the Introspection API methods
system.methodHelp and system.methodSignature respectively. If no help attribute is specified, the
method’s documentation string is used instead.

SOAP Support

From the point of view of a Twisted developer, there is little difference between XML-RPC support and SOAP support.
Here is an example of SOAP usage:

soap.rpy

from twisted.web import soap
import os

def getQuote():
return "That beverage, sir, is off the hizzy."

class Quoter(soap.SOAPPublisher):
"""Publish one method, 'quote'."""

def soap_quote(self):
return getQuote()

resource = Quoter()

Creating an XML-RPC Client

XML-RPC clients in Twisted are meant to look as something which will be familiar either to xmlrpclib or to Per-
spective Broker users, taking features from both, as appropriate. There are two major deviations from the xmlrpclib
way which should be noted:

1. No implicit /RPC2 . If the services uses this path for the XML-RPC calls, then it will have to be given explicitly.

2. No magic __getattr__ : calls must be made by an explicit callRemote .

The interface Twisted presents to XML-RPC client is that of a proxy object: twisted.web.xmlrpc.Proxy . The con-
structor for the object receives a URL: it must be an HTTP or HTTPS URL. When an XML-RPC service is described,
the URL to that service will be given there.

Having a proxy object, one can just call the callRemote method, which accepts a method name and a variable
argument list (but no named arguments, as these are not supported by XML-RPC). It returns a deferred, which will
be called back with the result. If there is any error, at any level, the errback will be called. The exception will be the
relevant Twisted error in the case of a problem with the underlying connection (for example, a timeout), IOError
containing the status and message in the case of a non-200 status or a xmlrpclib.Fault in the case of an XML-
RPC level problem.

402 Chapter 7. Twisted Web

https://twistedmatrix.com/documents/16.0.0/api/twisted.web.xmlrpc.Proxy.html

Twisted Documentation, Release 16.0.0

from twisted.web.xmlrpc import Proxy
from twisted.internet import reactor

def printValue(value):
print repr(value)
reactor.stop()

def printError(error):
print 'error', error
reactor.stop()

proxy = Proxy('http://advogato.org/XMLRPC')
proxy.callRemote('test.sumprod', 3, 5).addCallbacks(printValue, printError)
reactor.run()

prints:

[8, 15]

Serving SOAP and XML-RPC simultaneously

twisted.web.xmlrpc.XMLRPC and twisted.web.soap.SOAPPublisher are both Resource s. So, to serve both XML-
RPC and SOAP in the one web server, you can use the putChild method of Resource.

The following example uses an empty resource.Resource as the root resource for a Site , and then adds /RPC2 and
/SOAP paths to it.

xmlAndSoapQuote.py

from twisted.web import soap, xmlrpc, resource, server
import os

def getQuote():
return "Victory to the burgeois, you capitalist swine!"

class XMLRPCQuoter(xmlrpc.XMLRPC):
def xmlrpc_quote(self):

return getQuote()

class SOAPQuoter(soap.SOAPPublisher):
def soap_quote(self):

return getQuote()

def main():
from twisted.internet import reactor
root = resource.Resource()
root.putChild('RPC2', XMLRPCQuoter())
root.putChild('SOAP', SOAPQuoter())
reactor.listenTCP(7080, server.Site(root))
reactor.run()

if __name__ == '__main__':
main()

Refer to Twisted Web Development for more details about Resources.

7.1. Developer Guides 403

https://twistedmatrix.com/documents/16.0.0/api/twisted.web.xmlrpc.XMLRPC.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.soap.SOAPPublisher.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.resource.Resource.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.resource.IResource.putChild.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.resource.Resource.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.server.Site.html

Twisted Documentation, Release 16.0.0

7.1.6 Twisted Web In 60 Seconds

Serving Static Content From a Directory

The goal of this example is to show you how to serve static content from a filesystem. First, we need to import some
objects:

• Site, an IProtocolFactory which glues a listening server port (IListeningPort) to the HTTPChannel implementa-
tion:

from twisted.web.server import Site

• File, an IResource which glues the HTTP protocol implementation to the filesystem:

from twisted.web.static import File

• The reactor, which drives the whole process, actually accepting TCP connections and moving bytes into and out
of them:

from twisted.internet import reactor

Next, we create an instance of the File resource pointed at the directory to serve:

resource = File("/tmp")

Then we create an instance of the Site factory with that resource:

factory = Site(resource)

Now we glue that factory to a TCP port:

reactor.listenTCP(8888, factory)

Finally, we start the reactor so it can make the program work:

reactor.run()

And that’s it. Here’s the complete program:

from twisted.web.server import Site
from twisted.web.static import File
from twisted.internet import reactor

resource = File('/tmp')
factory = Site(resource)
reactor.listenTCP(8888, factory)
reactor.run()

Bonus example! For those times when you don’t actually want to write a new program, the above implemented
functionality is one of the things the command line twistd tool can do. In this case, the command

twistd -n web --path /tmp

will accomplish the same thing as the above server. See helper programs in the Twisted Core documentation for more
information on using twistd.

Generating a Page Dynamically

The goal of this example is to show you how to dynamically generate the contents of a page.

404 Chapter 7. Twisted Web

https://twistedmatrix.com/documents/16.0.0/api/twisted.web.server.Site.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IProtocolFactory.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IListeningPort.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.http.HTTPChannel.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.static.File.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.resource.IResource.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.reactor.html

Twisted Documentation, Release 16.0.0

Taking care of some of the necessary imports first, we’ll import Site and the reactor :

from twisted.internet import reactor
from twisted.web.server import Site

The Site is a factory which associates a listening port with the HTTP protocol implementation. The reactor is the main
loop that drives any Twisted application; we’ll use it to actually create the listening port in a moment.

Next, we’ll import one more thing from Twisted Web: Resource . An instance of Resource (or a subclass) represents
a page (technically, the entity addressed by a URI).

from twisted.web.resource import Resource

Since we’re going to make the demo resource a clock, we’ll also import the time module:

import time

With imports taken care of, the next step is to define a Resource subclass which has the dynamic rendering behavior
we want. Here’s a resource which generates a page giving the time:

class ClockPage(Resource):
isLeaf = True
def render_GET(self, request):

return "<html><body>%s</body></html>" % (time.ctime(),)

Setting isLeaf to True indicates that ClockPage resources will never have any children.

The render_GET method here will be called whenever the URI we hook this resource up to is requested with the
GET method. The byte string it returns is what will be sent to the browser.

With the resource defined, we can create a Site from it:

resource = ClockPage()
factory = Site(resource)

Just as with the previous static content example, this configuration puts our resource at the very top of the URI
hierarchy, ie at / . With that Site instance, we can tell the reactor to create a TCP server and start servicing requests:

reactor.listenTCP(8880, factory)
reactor.run()

Here’s the code with no interruptions:

from twisted.internet import reactor
from twisted.web.server import Site
from twisted.web.resource import Resource
import time

class ClockPage(Resource):
isLeaf = True
def render_GET(self, request):

return "<html><body>%s</body></html>" % (time.ctime(),)

resource = ClockPage()
factory = Site(resource)
reactor.listenTCP(8880, factory)
reactor.run()

Static URL Dispatch

The goal of this example is to show you how to serve different content at different URLs.

7.1. Developer Guides 405

https://twistedmatrix.com/documents/16.0.0/api/twisted.web.server.Site.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.reactor.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.resource.Resource.html

Twisted Documentation, Release 16.0.0

The key to understanding how different URLs are handled with the resource APIs in Twisted Web is understanding
that any URL can be used to address a node in a tree. Resources in Twisted Web exist in such a tree, and a request
for a URL will be responded to by the resource which that URL addresses. The addressing scheme considers only
the path segments of the URL. Starting with the root resource (the one used to construct the Site) and the first path
segment, a child resource is looked up. As long as there are more path segments, this process is repeated using the
result of the previous lookup and the next path segment. For example, to handle a request for "/foo/bar" , first the
root’s "foo" child is retrieved, then that resource’s "bar" child is retrieved, then that resource is used to create the
response.

With that out of the way, let’s consider an example that can serve a few different resources at a few different URLs.

First things first: we need to import Site , the factory for HTTP servers, Resource , a convenient base class for custom
pages, and reactor , the object which implements the Twisted main loop. We’ll also import File to use as the resource
at one of the example URLs.

from twisted.web.server import Site
from twisted.web.resource import Resource
from twisted.internet import reactor
from twisted.web.static import File

Now we create a resource which will correspond to the root of the URL hierarchy: all URLs are children of this
resource.

root = Resource()

Here comes the interesting part of this example. We’re now going to create three more resources and attach them to
the three URLs /foo , /bar , and /baz :

root.putChild("foo", File("/tmp"))
root.putChild("bar", File("/lost+found"))
root.putChild("baz", File("/opt"))

Last, all that’s required is to create a Site with the root resource, associate it with a listening server port, and start
the reactor:

factory = Site(root)
reactor.listenTCP(8880, factory)
reactor.run()

With this server running, http://localhost:8880/foo will serve a listing of files from
/tmp , http://localhost:8880/bar will serve a listing of files from /lost+found , and
http://localhost:8880/baz will serve a listing of files from /opt .

Here’s the whole example uninterrupted:

from twisted.web.server import Site
from twisted.web.resource import Resource
from twisted.internet import reactor
from twisted.web.static import File

root = Resource()
root.putChild("foo", File("/tmp"))
root.putChild("bar", File("/lost+found"))
root.putChild("baz", File("/opt"))

factory = Site(root)
reactor.listenTCP(8880, factory)
reactor.run()

406 Chapter 7. Twisted Web

https://twistedmatrix.com/documents/16.0.0/api/twisted.web.server.Site.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.resource.Resource.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.reactor.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.static.File.html

Twisted Documentation, Release 16.0.0

Dynamic URL Dispatch

In the previous example we covered how to statically configure Twisted Web to serve different content at different
URLs. The goal of this example is to show you how to do this dynamically instead. Reading the previous installment
if you haven’t already is suggested in order to get an overview of how URLs are treated when using Twisted Web’s
resource APIs.

Site (the object which associates a listening server port with the HTTP implementation), Resource (a convenient base
class to use when defining custom pages), and reactor (the object which implements the Twisted main loop) return
once again:

from twisted.web.server import Site
from twisted.web.resource import Resource
from twisted.internet import reactor

With that out of the way, here’s the interesting part of this example. We’re going to define a resource which renders
a whole-year calendar. The year it will render the calendar for will be the year in the request URL. So, for example,
/2009 will render a calendar for 2009. First, here’s a resource that renders a calendar for the year passed to its
initializer:

from calendar import calendar

class YearPage(Resource):
def __init__(self, year):

Resource.__init__(self)
self.year = year

def render_GET(self, request):
return "<html><body><pre>%s</pre></body></html>" % (calendar(self.year),)

Pretty simple - not all that different from the first dynamic resource demonstrated in Generating a Page Dynamically
. Now here’s the resource that handles URLs with a year in them by creating a suitable instance of this YearPage
class:

class Calendar(Resource):
def getChild(self, name, request):

return YearPage(int(name))

By implementing getChild here, we’ve just defined how Twisted Web should find children of Calendar instances
when it’s resolving an URL into a resource. This implementation defines all integers as the children of Calendar
(and punts on error handling, more on that later).

All that’s left is to create a Site using this resource as its root and then start the reactor:

root = Calendar()
factory = Site(root)
reactor.listenTCP(8880, factory)
reactor.run()

And that’s all. Any resource-based dynamic URL handling is going to look basically like Calendar.getChild .
Here’s the full example code:

from twisted.web.server import Site
from twisted.web.resource import Resource
from twisted.internet import reactor

from calendar import calendar

class YearPage(Resource):

7.1. Developer Guides 407

https://twistedmatrix.com/documents/16.0.0/api/twisted.web.resource.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.server.Site.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.resource.Resource.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.reactor.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.resource.Resource.getChild.html

Twisted Documentation, Release 16.0.0

def __init__(self, year):
Resource.__init__(self)
self.year = year

def render_GET(self, request):
return "<html><body><pre>%s</pre></body></html>" % (calendar(self.year),)

class Calendar(Resource):
def getChild(self, name, request):

return YearPage(int(name))

root = Calendar()
factory = Site(root)
reactor.listenTCP(8880, factory)
reactor.run()

Error Handling

In this example we’ll extend dynamic dispatch to return a 404 (not found) response when a client requests a non-
existent URL.

As in the previous examples, we’ll start with Site , Resource , and reactor imports:

from twisted.web.server import Site
from twisted.web.resource import Resource
from twisted.internet import reactor

Next, we’ll add one more import. NoResource is one of the pre-defined error resources provided by Twisted Web. It
generates the necessary 404 response code and renders a simple html page telling the client there is no such resource.

from twisted.web.resource import NoResource

Next, we’ll define a custom resource which does some dynamic URL dispatch. This example is going to be just like
the previous one , where the path segment is interpreted as a year; the difference is that this time we’ll handle requests
which don’t conform to that pattern by returning the not found response:

class Calendar(Resource):
def getChild(self, name, request):

try:
year = int(name)

except ValueError:
return NoResource()

else:
return YearPage(year)

Aside from including the definition of YearPage from the previous example, the only other thing left to do is the
normal Site and reactor setup. Here’s the complete code for this example:

from twisted.web.server import Site
from twisted.web.resource import Resource
from twisted.internet import reactor
from twisted.web.resource import NoResource

from calendar import calendar

class YearPage(Resource):
def __init__(self, year):

Resource.__init__(self)

408 Chapter 7. Twisted Web

https://twistedmatrix.com/documents/16.0.0/api/twisted.web.server.Site.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.resource.Resource.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.reactor.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.resource.NoResource.html

Twisted Documentation, Release 16.0.0

self.year = year

def render_GET(self, request):
return "<html><body><pre>%s</pre></body></html>" % (calendar(self.year),)

class Calendar(Resource):
def getChild(self, name, request):

try:
year = int(name)

except ValueError:
return NoResource()

else:
return YearPage(year)

root = Calendar()
factory = Site(root)
reactor.listenTCP(8880, factory)
reactor.run()

This server hands out the same calendar views as the one from the previous installment, but it will also hand out a nice
error page with a 404 response when a request is made for a URL which cannot be interpreted as a year.

Custom Response Codes

The previous example introduced NoResource , a Twisted Web error resource which responds with a 404 (not found)
code. This example will cover the APIs that NoResource uses to do this so that you can generate your own custom
response codes as desired.

First, the now-standard import preamble:

from twisted.web.server import Site
from twisted.web.resource import Resource
from twisted.internet import reactor

Now we’ll define a new resource class that always returns a 402 (payment required) response. This is really not very
different from the resources that was defined in previous examples. The fact that it has a response code other than
200 doesn’t change anything else about its role. This will require using the request object, though, which none of the
previous examples have done.

The Request object has shown up in a couple of places, but so far we’ve ignored it. It is a parameter to the getChild
API as well as to render methods such as render_GET . As you might have suspected, it represents the request for
which a response is to be generated. Additionally, it also represents the response being generated. In this example
we’re going to use its setResponseCode method to - you guessed it - set the response’s status code.

class PaymentRequired(Resource):
def render_GET(self, request):

request.setResponseCode(402)
return "<html><body>Please swipe your credit card.</body></html>"

Just like the other resources I’ve demonstrated, this one returns a string from its render_GET method to define the
body of the response. All that’s different is the call to setResponseCode to override the default response code,
200, with a different one.

Finally, the code to set up the site and reactor. We’ll put an instance of the above defined resource at /buy :

root = Resource()
root.putChild("buy", PaymentRequired())
factory = Site(root)

7.1. Developer Guides 409

https://twistedmatrix.com/documents/16.0.0/api/twisted.web.error.NoResource.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.server.Request.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.resource.Resource.getChild.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.http.Request.setResponseCode.html

Twisted Documentation, Release 16.0.0

reactor.listenTCP(8880, factory)
reactor.run()

Here’s the complete example:

from twisted.web.server import Site
from twisted.web.resource import Resource
from twisted.internet import reactor

class PaymentRequired(Resource):
def render_GET(self, request):

request.setResponseCode(402)
return "<html><body>Please swipe your credit card.</body></html>"

root = Resource()
root.putChild("buy", PaymentRequired())
factory = Site(root)
reactor.listenTCP(8880, factory)
reactor.run()

Run the server and visit http://localhost:8880/buy in your browser. It’ll look pretty boring, but if you use
Firefox’s View Page Info right-click menu item (or your browser’s equivalent), you’ll be able to see that the server
indeed sent back a 402 response code.

Handling POSTs

All of the previous examples have focused on GET requests. Unlike GET requests, POST requests can have a request
body - extra data after the request headers; for example, data representing the contents of an HTML form. Twisted
Web makes this data available to applications via the Request object.

Here’s an example web server which renders a static HTML form and then generates a dynamic page when that form is
posted back to it. Disclaimer: While it’s convenient for this example, it’s often not a good idea to make a resource that
POST s to itself; this isn’t about Twisted Web, but the nature of HTTP in general; if you do this in a real application,
make sure you understand the possible negative consequences.

As usual, we start with some imports. In addition to the Twisted imports, this example uses the cgi module to escape
user-enteredcontent for inclusion in the output.

from twisted.web.server import Site
from twisted.web.resource import Resource
from twisted.internet import reactor

import cgi

Next, we’ll define a resource which is going to do two things. First, it will respond to GET requests with a static
HTML form:

class FormPage(Resource):
def render_GET(self, request):

return '<html><body><form method="POST"><input name="the-field" type="text" /></form></body></html>'

This is similar to the resource used in a previous installment . However, we’ll now add one more method to give it a
second behavior; this render_POST method will allow it to accept POST requests:
...

def render_POST(self, request):
return '<html><body>You submitted: %s</body></html>' % (cgi.escape(request.args["the-field"][0]),)

410 Chapter 7. Twisted Web

https://twistedmatrix.com/documents/16.0.0/api/twisted.web.server.Request.html
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting

Twisted Documentation, Release 16.0.0

The main thing to note here is the use of request.args . This is a dictionary-like object that provides access to the
contents of the form. The keys in this dictionary are the names of inputs in the form. Each value is a list containing
strings (since there can be multiple inputs with the same name), which is why we had to extract the first element to pass
to cgi.escape . request.args will be populated from form contents whenever a POST request is made with a
content type of application/x-www-form-urlencoded or multipart/form-data (it’s also populated
by query arguments for any type of request).

Finally, the example just needs the usual site creation and port setup:

root = Resource()
root.putChild("form", FormPage())
factory = Site(root)
reactor.listenTCP(8880, factory)
reactor.run()

Run the server and visit http://localhost:8880/form , submit the form, and watch it generate a page including the value
you entered into the single field.

Here’s the complete source for the example:

from twisted.web.server import Site
from twisted.web.resource import Resource
from twisted.internet import reactor

import cgi

class FormPage(Resource):
def render_GET(self, request):

return '<html><body><form method="POST"><input name="the-field" type="text" /></form></body></html>'

def render_POST(self, request):
return '<html><body>You submitted: %s</body></html>' % (cgi.escape(request.args["the-field"][0]),)

root = Resource()
root.putChild("form", FormPage())
factory = Site(root)
reactor.listenTCP(8880, factory)
reactor.run()

Other Request Bodies

The previous example demonstrated how to accept the payload of a POST carrying HTML form data. What about
POST requests with data in some other format? Or even PUT requests? Here is an example which demonstrates how
to get any request body, regardless of its format - using the request’s content attribute.

The only significant difference between this example and the previous is that instead of accessing request.args
in render_POST , it uses request.content to get the request’s body directly:
...

def render_POST(self, request):
return '<html><body>You submitted: %s</body></html>' % (cgi.escape(request.content.read()),)

request.content is a file-like object, so the body is read from it. The exact type may vary, so avoid relying on
non-file methods you may find (such as getvalue when happens to be a StringIO instance).

Here’s the complete source for this example - again, almost identical to the previous POST example, with only
render_POST changed:

7.1. Developer Guides 411

http://localhost:8880/form
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.iweb.IRequest.content.html

Twisted Documentation, Release 16.0.0

from twisted.web.server import Site
from twisted.web.resource import Resource
from twisted.internet import reactor

import cgi

class FormPage(Resource):
def render_GET(self, request):

return '<html><body><form method="POST"><input name="the-field" type="text" /></form></body></html>'

def render_POST(self, request):
return '<html><body>You submitted: %s</body></html>' % (cgi.escape(request.content.read()),)

root = Resource()
root.putChild("form", FormPage())
factory = Site(root)
reactor.listenTCP(8880, factory)
reactor.run()

rpy scripts (or, how to save yourself some typing)

The goal of this installment is to show you another way to run a Twisted Web server with a custom resource which
doesn’t require as much code as the previous examples.

The feature in question is called an rpy script . An rpy script is a Python source file which defines a resource
and can be loaded into a Twisted Web server. The advantages of this approach are that you don’t have to write code
to create the site or set up a listening port with the reactor. That means fewer lines of code that aren’t dedicated to the
task you’re trying to accomplish.

There are some disadvantages, though. An rpy script must have the extension .rpy . This means you can’t import
it using the usual Python import statement. This means it’s hard to re-use code in an rpy script. This also means you
can’t easily unit test it. The code in an rpy script is evaluated in an unusual context. So, while rpy scripts may be
useful for testing out ideas, they’re not recommend for much more than that.

Okay, with that warning out of the way, let’s dive in. First, as mentioned, rpy scripts are Python source files with the
.rpy extension. So, open up an appropriately named file (for example, example.rpy) and put this code in it:

import time

from twisted.web.resource import Resource

class ClockPage(Resource):
isLeaf = True
def render_GET(self, request):

return "<html><body>%s</body></html>" % (time.ctime(),)

resource = ClockPage()

You may recognize this as the resource from the first dynamic rendering example . What’s different is what you don’t
see: we didn’t import reactor or Site . There are no calls to listenTCP or run . Instead, and this is the core
idea for rpy scripts, we just bound the name resource to the resource we want the script to serve. Every rpy script
must bind this name, and this name is the only thing Twisted Web will pay attention to in an rpy script.

All that’s left is to drop this rpy script into a Twisted Web server. There are a few ways to do this. The simplest way is
with twistd :

$ twistd -n web --path .

412 Chapter 7. Twisted Web

Twisted Documentation, Release 16.0.0

Hit http://localhost:8080/example.rpy to see it run. You can pass other arguments here too. twistd web has options
for specifying which port number to bind, whether to set up an HTTPS server, and plenty more. Other options you
can pass to twistd allow you to configure logging to work differently, to select a different reactor, etc. For a full list
of options, see twistd --help and twistd web --help .

Asynchronous Responses

In all of the previous examples, the resource examples presented generated responses immediately. One of the features
of prime interest of Twisted Web, though, is the ability to generate a response over a longer period of time while
leaving the server free to respond to other requests. In other words, asynchronously. In this installment, we’ll write a
resource like this.

A resource that generates a response asynchronously looks like one that generates a response synchronously in many
ways. The same base class, Resource , is used either way; the same render methods are used. There are three basic
differences, though.

First, instead of returning the string which will be used as the body of the response, the resource uses Request.write .
This method can be called repeatedly. Each call appends another string to the response body. Second, when the entire
response body has been passed to Request.write , the application must call Request.finish . As you might expect
from the name, this ends the response. Finally, in order to make Twisted Web not end the response as soon as the
render method returns, the render method must return NOT_DONE_YET . Consider this example:

from twisted.web.resource import Resource
from twisted.web.server import NOT_DONE_YET
from twisted.internet import reactor

class DelayedResource(Resource):
def _delayedRender(self, request):

request.write("<html><body>Sorry to keep you waiting.</body></html>")
request.finish()

def render_GET(self, request):
reactor.callLater(5, self._delayedRender, request)
return NOT_DONE_YET

If you’re not familiar with the reactor callLater method, all you really need to know about it to understand this example
is that the above usage of it arranges to have self._delayedRender(request) run about 5 seconds after
callLater is invoked from this render method and that it returns immediately.

All three of the elements mentioned earlier can be seen in this example. The resource uses Request.write to set
the response body. It uses Request.finish after the entire body has been specified (all with just one call to write
in this case). Lastly, it returns NOT_DONE_YET from its render method. So there you have it, asynchronous rendering
with Twisted Web.

Here’s a complete rpy script based on this resource class (see the previous example if you need a reminder about rpy
scripts):

from twisted.web.resource import Resource
from twisted.web.server import NOT_DONE_YET
from twisted.internet import reactor

class DelayedResource(Resource):
def _delayedRender(self, request):

request.write("<html><body>Sorry to keep you waiting.</body></html>")
request.finish()

def render_GET(self, request):
reactor.callLater(5, self._delayedRender, request)

7.1. Developer Guides 413

http://localhost:8080/example.rpy
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.resource.Resource.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.http.Request.write.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.http.Request.finish.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorTime.callLater.html

Twisted Documentation, Release 16.0.0

return NOT_DONE_YET

resource = DelayedResource()

Drop this source into a .rpy file and fire up a server using twistd -n web --path
/directory/containing/script/. You’ll see that loading the page takes 5 seconds. If you try to
load a second before the first completes, it will also take 5 seconds from the time you request it (but it won’t be
delayed by any other outstanding requests).

Something else to consider when generating responses asynchronously is that the client may not wait around to get the
response to its request. A subsequent example demonstrates how to detect that the client has abandoned the request
and that the server shouldn’t bother to finish generating its response.

Asynchronous Responses (via Deferred)

The previous example had a Resource that generates its response asynchronously rather than immediately upon the
call to its render method. Though it was a useful demonstration of the NOT_DONE_YET feature of Twisted Web, the
example didn’t reflect what a realistic application might want to do. This example introduces Deferred , the Twisted
class which is used to provide a uniform interface to many asynchronous events, and shows you an example of using
a Deferred -returning API to generate an asynchronous response to a request in Twisted Web.

Deferred is the result of two consequences of the asynchronous programming approach. First, asynchronous code
is frequently (if not always) concerned with some data (in Python, an object) which is not yet available but which
probably will be soon. Asynchronous code needs a way to define what will be done to the object once it does exist. It
also needs a way to define how to handle errors in the creation or acquisition of that object. These two needs are satis-
fied by the callbacks and errbacks of a Deferred . Callbacks are added to a Deferred with Deferred.addCallback
; errbacks are added with Deferred.addErrback . When the object finally does exist, it is passed to Deferred.callback
which passes it on to the callback added with addCallback . Similarly, if an error occurs, Deferred.errback is called
and the error is passed along to the errback added with addErrback . Second, the events that make asynchronous
code actually work often take many different, incompatible forms. Deferred acts as the uniform interface which lets
different parts of an asynchronous application interact and isolates them from implementation details they shouldn’t
be concerned with.

That’s almost all there is to Deferred . To solidify your new understanding, now consider this rewritten version
of DelayedResource which uses a Deferred -based delay API. It does exactly the same thing as the previous
example . Only the implementation is different.

First, the example must import that new API that was just mentioned, deferLater :

from twisted.internet.task import deferLater

Next, all the other imports (these are the same as last time):

from twisted.web.resource import Resource
from twisted.web.server import NOT_DONE_YET
from twisted.internet import reactor

With the imports done, here’s the first part of the DelayedResource implementation. Again, this part of the code
is identical to the previous version:

class DelayedResource(Resource):
def _delayedRender(self, request):

request.write("<html><body>Sorry to keep you waiting.</body></html>")
request.finish()

Next we need to define the render method. Here’s where things change a bit. Instead of using callLater , We’re going
to use deferLater this time. deferLater accepts a reactor, delay (in seconds, as with callLater), and a function

414 Chapter 7. Twisted Web

https://twistedmatrix.com/documents/16.0.0/api/twisted.web.resource.Resource.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.addCallback.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.addErrback.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.callback.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.Deferred.errback.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.task.deferLater.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IReactorTime.callLater.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.task.deferLater.html

Twisted Documentation, Release 16.0.0

to call after the delay to produce that elusive object discussed in the description of Deferred s. We’re also going
to use _delayedRender as the callback to add to the Deferred returned by deferLater . Since it expects
the request object as an argument, we’re going to set up the deferLater call to return a Deferred which has the
request object as its result.
...

def render_GET(self, request):
d = deferLater(reactor, 5, lambda: request)

The Deferred referenced by d now needs to have the _delayedRender callback added to it. Once this is
done, _delayedRender will be called with the result of d (which will be request , of course — the result of
(lambda: request)()).
...

d.addCallback(self._delayedRender)

Finally, the render method still needs to return NOT_DONE_YET , for exactly the same reasons as it did in the previous
version of the example.
...

return NOT_DONE_YET

And with that, DelayedResource is now implemented based on a Deferred . The example still isn’t very
realistic, but remember that since Deferred s offer a uniform interface to many different asynchronous event sources,
this code now resembles a real application even more closely; you could easily replace deferLater with another
Deferred -returning API and suddenly you might have a resource that does something useful.

Finally, here’s the complete, uninterrupted example source, as an rpy script:

from twisted.internet.task import deferLater
from twisted.web.resource import Resource
from twisted.web.server import NOT_DONE_YET
from twisted.internet import reactor

class DelayedResource(Resource):
def _delayedRender(self, request):

request.write("<html><body>Sorry to keep you waiting.</body></html>")
request.finish()

def render_GET(self, request):
d = deferLater(reactor, 5, lambda: request)
d.addCallback(self._delayedRender)
return NOT_DONE_YET

resource = DelayedResource()

Interrupted Responses

The previous example had a Resource that generates its response asynchronously rather than immediately upon the
call to its render method. When generating responses asynchronously, the possibility is introduced that the connection
to the client may be lost before the response is generated. In such a case, it is often desirable to abandon the response
generation entirely, since there is nothing to do with the data once it is produced. This example shows how to be
notified that the connection has been lost.

This example will build upon the asynchronous responses example which simply (if not very realistically) generated
its response after a fixed delay. We will expand that resource so that as soon as the client connection is lost, the delayed
event is cancelled and the response is never generated.

The feature this example relies on is provided by another Request method: notifyFinish . This method returns a new

7.1. Developer Guides 415

https://twistedmatrix.com/documents/16.0.0/api/twisted.web.server.Request.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.http.Request.notifyFinish.html

Twisted Documentation, Release 16.0.0

Deferred which will fire with None if the request is successfully responded to or with an error otherwise - for example
if the connection is lost before the response is sent.

The example starts in a familiar way, with the requisite Twisted imports and a resource class with the same
_delayedRender used previously:

from twisted.web.resource import Resource
from twisted.web.server import NOT_DONE_YET
from twisted.internet import reactor

class DelayedResource(Resource):
def _delayedRender(self, request):

request.write("<html><body>Sorry to keep you waiting.</body></html>")
request.finish()

Before defining the render method, we’re going to define an errback (an errback being a callback that gets
called when there’s an error), though. This will be the errback attached to the Deferred returned by
Request.notifyFinish . It will cancel the delayed call to _delayedRender .
...

def _responseFailed(self, err, call):
call.cancel()

Finally, the render method will set up the delayed call just as it did before, and return NOT_DONE_YET likewise.
However, it will also use Request.notifyFinish to make sure _responseFailed is called if appropriate.
...

def render_GET(self, request):
call = reactor.callLater(5, self._delayedRender, request)
request.notifyFinish().addErrback(self._responseFailed, call)
return NOT_DONE_YET

Notice that since _responseFailed needs a reference to the delayed call object in order to cancel it, we passed
that object to addErrback . Any additional arguments passed to addErrback (or addCallback) will be passed
along to the errback after the Failure instance which is always passed as the first argument. Passing call here means
it will be passed to _responseFailed , where it is expected and required.

That covers almost all the code for this example. Here’s the entire example without interruptions, as an rpy script :

from twisted.web.resource import Resource
from twisted.web.server import NOT_DONE_YET
from twisted.internet import reactor

class DelayedResource(Resource):
def _delayedRender(self, request):

request.write("<html><body>Sorry to keep you waiting.</body></html>")
request.finish()

def _responseFailed(self, err, call):
call.cancel()

def render_GET(self, request):
call = reactor.callLater(5, self._delayedRender, request)
request.notifyFinish().addErrback(self._responseFailed, call)
return NOT_DONE_YET

resource = DelayedResource()

Toss this into example.rpy , fire it up with twistd -n web --path . , and hit
http://localhost:8080/example.rpy . If you wait five seconds, you’ll get the page content. If you interrupt the

416 Chapter 7. Twisted Web

https://twistedmatrix.com/documents/16.0.0/api/twisted.python.failure.Failure.html
http://localhost:8080/example.rpy

Twisted Documentation, Release 16.0.0

request before then, say by hitting escape (in Firefox, at least), then you’ll see perhaps the most boring demonstration
ever - no page content, and nothing in the server logs. Success!

Logging Errors

The previous example created a server that dealt with response errors by aborting response generation, potentially
avoiding pointless work. However, it did this silently for any error. In this example, we’ll modify the previous
example so that it logs each failed response.

This example will use the Twisted API for logging errors. As was mentioned in the first example covering Deferreds
, errbacks are passed an error. In the previous example, the _responseFailed errback accepted this error as a
parameter but ignored it. The only way this example will differ is that this _responseFailed will use that error
parameter to log a message.

This example will require all of the imports required by the previous example plus one new import:

from twisted.python.log import err

The only other part of the previous example which changes is the _responseFailed callback, which will now log
the error passed to it:
...

def _responseFailed(self, failure, call):
call.cancel()
err(failure, "Async response demo interrupted response")

We’re passing two arguments to err here. The first is the error which is being passed in to the callback. This is always
an object of type Failure , a class which represents an exception and (sometimes, but not always) a traceback. err
will format this nicely for the log. The second argument is a descriptive string that tells someone reading the log what
the source of the error was.

Here’s the full example with the two above modifications:

from twisted.web.resource import Resource
from twisted.web.server import NOT_DONE_YET
from twisted.internet import reactor
from twisted.python.log import err

class DelayedResource(Resource):
def _delayedRender(self, request):

request.write("<html><body>Sorry to keep you waiting.</body></html>")
request.finish()

def _responseFailed(self, failure, call):
call.cancel()
err(failure, "Async response demo interrupted response")

def render_GET(self, request):
call = reactor.callLater(5, self._delayedRender, request)
request.notifyFinish().addErrback(self._responseFailed, call)
return NOT_DONE_YET

resource = DelayedResource()

Run this server as in the previous example and interrupt a request. Unlike the previous example, where the server gave
no indication that this had happened, you’ll see a message in the log output with this version.

7.1. Developer Guides 417

https://twistedmatrix.com/documents/16.0.0/api/twisted.python.log.err.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.python.failure.Failure.html

Twisted Documentation, Release 16.0.0

Access Logging

As long as we’re on the topic of logging, this is probably a good time to mention Twisted Web’s access log support.
In this example, we’ll see what Twisted Web logs for each request it processes and how this can be customized.

If you’ve run any of the previous examples and watched the output of twistd or read twistd.log then you’ve
already seen some log lines like this:

2014-01-29 17:50:50-0500 [HTTPChannel,0,127.0.0.1] “127.0.0.1” - - [29/Jan/2014:22:50:50 +0000]
“GET / HTTP/1.1” 200 2753 “-” “Mozilla/5.0 ...”

If you focus on the latter portion of this log message you’ll see something that looks like a standard “combined log
format” message. However, it’s prefixed with the normal Twisted logging prefix giving a timestamp and some protocol
and peer addressing information. Much of this information is redundant since it is part of the combined log format. Site
lets you produce a more compact log which omits the normal Twisted logging prefix. To take advantage of this feature
all that is necessary is to tell Site where to write this compact log. Do this by passing logPath to the initializer:
...
factory = Site(root, logPath=b"/tmp/access-logging-demo.log")

Or if you want to change the logging behavior of a server you’re launching with twistd web then just pass the
--logfile option:

$ twistd -n web --logfile /tmp/access-logging-demo.log

Apart from this, the rest of the server setup is the same. Once you pass logPath or use --logfile on the command
line the server will produce a log file containing lines like:

“127.0.0.1” - - [30/Jan/2014:00:13:35 +0000] “GET / HTTP/1.1” 200 2753 “-” “Mozilla/5.0 ...”

Any tools expecting combined log format messages should be able to work with these log files.

Site also allows the log format used to be customized using its logFormatter argument. Twisted Web comes with
one alternate formatter, proxiedLogFormatter, which is for use behind a proxy that sets the X-Forwarded-For
header. It logs the client address taken from this header rather than the network address of the client directly connected
to the server. Here’s the complete code for an example that uses both these features:

from twisted.web.http import proxiedLogFormatter
from twisted.web.server import Site
from twisted.web.static import File
from twisted.internet import reactor

resource = File('/tmp')
factory = Site(resource, logPath=b"/tmp/access-logging-demo.log", logFormatter=proxiedLogFormatter)
reactor.listenTCP(8888, factory)
reactor.run()

WSGI

The goal of this example is to show you how to use WSGIResource , another existing Resource subclass, to serve
WSGI applications in a Twisted Web server.

Note that WSGIResource is a multithreaded WSGI container. Like any other WSGI container, you can’t do anything
asynchronous in your WSGI applications, even though this is a Twisted WSGI container.

The first new thing in this example is the import of WSGIResource :

from twisted.web.wsgi import WSGIResource

Nothing too surprising there. We still need one of the other usual suspects, too:

418 Chapter 7. Twisted Web

https://twistedmatrix.com/documents/16.0.0/api/twisted.web.server.Site.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.server.Site.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.server.Site.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.http.proxiedLogFormatter.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.wsgi.WSGIResource.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.resource.Resource.html
http://www.python.org/dev/peps/pep-0333/

Twisted Documentation, Release 16.0.0

from twisted.internet import reactor

You’ll see why in a minute. Next, we need a WSGI application. Here’s a really simple one just to get things going:

def application(environ, start_response):
start_response('200 OK', [('Content-type', 'text/plain')])
return ['Hello, world!']

If this doesn’t make sense to you, take a look at one of these fine tutorials . Otherwise, or once you’re done with that,
the next step is to create a WSGIResource instance, as this is going to be another rpy script example:

resource = WSGIResource(reactor, reactor.getThreadPool(), application)

Let’s dwell on this line for a minute. The first parameter passed to WSGIResource is the reactor. Despite the fact
that the reactor is global and any code that wants it can always just import it (as, in fact, this rpy script simply does
itself), passing it around as a parameter leaves the door open for certain future possibilities - for example, having more
than one reactor. There are also testing implications. Consider how much easier it is to unit test a function that accepts
a reactor - perhaps a mock reactor specially constructed to make your tests easy to write - rather than importing the
real global reactor. That’s why WSGIResource requires you to pass the reactor to it.

The second parameter passed to WSGIResource is a ThreadPool . WSGIResource uses this to actually call the
application object passed in to it. To keep this example short, we’re passing in the reactor’s internal threadpool here,
letting us skip its creation and shutdown-time destruction. For finer control over how many WSGI requests are served
in parallel, you may want to create your own thread pool to use with your WSGIResource , but for simple testing,
using the reactor’s is fine.

The final argument is the application object. This is pretty typical of how WSGI containers work.

The example, sans interruption:

from twisted.web.wsgi import WSGIResource
from twisted.internet import reactor

def application(environ, start_response):
start_response('200 OK', [('Content-type', 'text/plain')])
return ['Hello, world!']

resource = WSGIResource(reactor, reactor.getThreadPool(), application)

Up to the point where the WSGIResource instance defined here exists in the resource hierarchy, the normal resource
traversal rules apply: getChild will be called to handle each segment. Once the WSGIResource is encountered,
though, that process stops and all further URL handling is the responsibility of the WSGI application. This application
does nothing with the URL, though, so you won’t be able to tell that.

Oh, and as was the case with the first static file example, there’s also a command line option you can use to avoid a
lot of this. If you just put the above application function, without all of the WSGIResource stuff, into a file, say,
foo.py , then you can launch a roughly equivalent server like this:

$ twistd -n web --wsgi foo.application

HTTP Authentication

Many of the previous examples have looked at how to serve content by using existing resource classes or implementing
new ones. In this example we’ll use Twisted Web’s basic or digest HTTP authentication to control access to these
resources.

guard , the Twisted Web module which provides most of the APIs that will be used in this example, helps you to
add authentication and authorization to a resource hierarchy. It does this by providing a resource which implements

7.1. Developer Guides 419

http://wsgi.readthedocs.org/en/latest/learn.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.python.threadpool.ThreadPool.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.resource.Resource.getChild.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.guard.html
http://en.wikipedia.org/wiki/Authentication
http://en.wikipedia.org/wiki/Authorization

Twisted Documentation, Release 16.0.0

getChild to return a dynamically selected resource . The selection is based on the authentication headers in the request.
If those headers indicate that the request is made on behalf of Alice, then Alice’s resource will be returned. If they
indicate that it was made on behalf of Bob, his will be returned. If the headers contain invalid credentials, an error
resource is returned. Whatever happens, once this resource is returned, URL traversal continues as normal from that
resource.

The resource that implements this is HTTPAuthSessionWrapper , though it is directly responsible for very little of the
process. It will extract headers from the request and hand them off to a credentials factory to parse them according
to the appropriate standards (eg HTTPAuthentication: Basic and Digest Access Authentication) and then hand the
resulting credentials object off to a Portal , the core of Twisted Cred , a system for uniform handling of authentication
and authorization. We won’t discuss Twisted Cred in much depth here. To make use of it with Twisted Web, the only
thing you really need to know is how to implement an IRealm .

You need to implement a realm because the realm is the object that actually decides which resources are used for
which users. This can be as complex or as simple as it suitable for your application. For this example we’ll
keep it very simple: each user will have a resource which is a static file listing of the public_html directory
in their UNIX home directory. First, we need to import implements from zope.interface and IRealm from
twisted.cred.portal . Together these will let me mark this class as a realm (this is mostly - but not entirely -
a documentation thing). We’ll also need File for the actual implementation later.

from zope.interface import implements

from twisted.cred.portal import IRealm
from twisted.web.static import File

class PublicHTMLRealm(object):
implements(IRealm)

A realm only needs to implement one method: requestAvatar . This method is called after any successful authenti-
cation attempt (ie, Alice supplied the right password). Its job is to return the avatar for the user who succeeded in
authenticating. An avatar is just an object that represents a user. In this case, it will be a File . In general, with
Guard , the avatar must be a resource of some sort.
...

def requestAvatar(self, avatarId, mind, *interfaces):
if IResource in interfaces:

return (IResource, File("/home/%s/public_html" % (avatarId,)), lambda: None)
raise NotImplementedError()

A few notes on this method:

• The avatarId parameter is essentially the username. It’s the job of some other code to extract the username
from the request headers and make sure it gets passed here.

• The mind is always None when writing a realm to be used with Guard . You can ignore it until you want to
write a realm for something else.

• Guard is always passed IResource as the interfaces parameter. If interfaces only contains inter-
faces your code doesn’t understand, raising NotImplementedError is the thing to do, as above. You’ll only
need to worry about getting a different interface when you write a realm for something other than Guard .

• If you want to track when a user logs out, that’s what the last element of the returned tuple is for. It will be
called when this avatar logs out. lambda: None is the idiomatic no-op logout function.

• Notice that the path handling code in this example is written very poorly. This example may be vulnerable to
certain unintentional information disclosure attacks. This sort of problem is exactly the reason FilePath exists.
However, that’s an example for another day...

We’re almost ready to set up the resource for this example. To create an HTTPAuthSessionWrapper , though, we
need two things. First, a portal, which requires the realm above, plus at least one credentials checker:

420 Chapter 7. Twisted Web

https://twistedmatrix.com/documents/16.0.0/api/twisted.web.resource.Resource.getChild.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.guard.HTTPAuthSessionWrapper.html
http://tools.ietf.org/html/rfc2617
https://twistedmatrix.com/documents/16.0.0/api/twisted.cred.portal.Portal.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.cred.portal.IRealm.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.static.File.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.cred.portal.IRealm.requestAvatar.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.python.filepath.FilePath.html

Twisted Documentation, Release 16.0.0

from twisted.cred.portal import Portal
from twisted.cred.checkers import FilePasswordDB

portal = Portal(PublicHTMLRealm(), [FilePasswordDB('httpd.password')])

FilePasswordDB is the credentials checker. It knows how to read passwd(5) -style (loosely) files to check creden-
tials against. It is responsible for the authentication work after HTTPAuthSessionWrapper extracts the credentials
from the request.

Next we need either BasicCredentialFactory or DigestCredentialFactory . The former knows how to challenge HTTP
clients to do basic authentication; the latter, digest authentication. We’ll use digest here:

from twisted.web.guard import DigestCredentialFactory

credentialFactory = DigestCredentialFactory("md5", "example.org")

The two parameters to this constructor are the hash algorithm and the HTTP authentication realm which will be used.
The only other valid hash algorithm is “sha” (but be careful, MD5 is more widely supported than SHA). The HTTP
authentication realm is mostly just a string that is presented to the user to let them know why they’re authenticating
(you can read more about this in the RFC).

With those things created, we can finally instantiate HTTPAuthSessionWrapper :

from twisted.web.guard import HTTPAuthSessionWrapper

resource = HTTPAuthSessionWrapper(portal, [credentialFactory])

There’s just one last thing that needs to be done here. When rpy scripts were introduced, it was mentioned that they are
evaluated in an unusual context. This is the first example that actually needs to take this into account. It so happens that
DigestCredentialFactory instances are stateful. Authentication will only succeed if the same instance is used
to both generate challenges and examine the responses to those challenges. However, the normal mode of operation
for an rpy script is for it to be re-executed for every request. This leads to a new DigestCredentialFactory
being created for every request, preventing any authentication attempt from ever succeeding.

There are two ways to deal with this. First, and the better of the two ways, we could move almost all of the code into
a real Python module, including the code that instantiates the DigestCredentialFactory . This would ensure
that the same instance was used for every request. Second, and the easier of the two ways, we could add a call to
cache() to the beginning of the rpy script:

cache()

cache is part of the globals of any rpy script, so you don’t need to import it (it’s okay to be cringing at this point).
Calling cache makes Twisted re-use the result of the first evaluation of the rpy script for subsequent requests too -
just what we want in this case.

Here’s the complete example (with imports re-arranged to the more conventional style):

cache()

from zope.interface import implements

from twisted.cred.portal import IRealm, Portal
from twisted.cred.checkers import FilePasswordDB
from twisted.web.static import File
from twisted.web.resource import IResource
from twisted.web.guard import HTTPAuthSessionWrapper, DigestCredentialFactory

class PublicHTMLRealm(object):
implements(IRealm)

7.1. Developer Guides 421

https://twistedmatrix.com/documents/16.0.0/api/twisted.cred.checkers.FilePasswordDB.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.guard.BasicCredentialFactory.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.guard.DigestCredentialFactory.html
http://tools.ietf.org/html/rfc2617

Twisted Documentation, Release 16.0.0

def requestAvatar(self, avatarId, mind, *interfaces):
if IResource in interfaces:

return (IResource, File("/home/%s/public_html" % (avatarId,)), lambda: None)
raise NotImplementedError()

portal = Portal(PublicHTMLRealm(), [FilePasswordDB('httpd.password')])

credentialFactory = DigestCredentialFactory("md5", "localhost:8080")
resource = HTTPAuthSessionWrapper(portal, [credentialFactory])

And voila, a password-protected per-user Twisted Web server.

Session Basics

Sessions are the most complicated topic covered in this series of examples, and because of that it is going to take a
few examples to cover all of the different aspects. This first example demonstrates the very basics of the Twisted Web
session API: how to get the session object for the current request and how to prematurely expire a session.

Before diving into the APIs, let’s look at the big picture of sessions in Twisted Web. Sessions are represented by
instances of Session . The Site creates a new instance of Session the first time an application asks for it for a
particular session. Session instances are kept on the Site instance until they expire (due to inactivity or because
they are explicitly expired). Each time after the first that a particular session’s Session object is requested, it is
retrieved from the Site .

With the conceptual underpinnings of the upcoming API in place, here comes the example. This will be a very simple
rpy script which tells a user what its unique session identifier is and lets it prematurely expire the session.

First, we’ll import Resource so we can define a couple of subclasses of it:

from twisted.web.resource import Resource

Next we’ll define the resource which tells the client what its session identifier is. This is done easily by first getting
the session object using Request.getSession and then getting the session object’s uid attribute:

class ShowSession(Resource):
def render_GET(self, request):

return 'Your session id is: ' + request.getSession().uid

To let the client expire its own session before it times out, we’ll define another resource which expires whatever session
it is requested with. This is done using the Session.expire method:

class ExpireSession(Resource):
def render_GET(self, request):

request.getSession().expire()
return 'Your session has been expired.'

Finally, to make the example an rpy script, we’ll make an instance of ShowSession and give it an instance of
ExpireSession as a child using Resource.putChild :

resource = ShowSession()
resource.putChild("expire", ExpireSession())

And that is the complete example. You can fire this up and load the top page. You’ll see a (rather opaque) session
identifier that remains the same across reloads (at least until you flush the TWISTED_SESSION cookie from your
browser or enough time passes). You can then visit the expire child and go back to the top page and see that you
have a new session.

Here’s the complete source for the example:

422 Chapter 7. Twisted Web

https://twistedmatrix.com/documents/16.0.0/api/twisted.web.server.Session.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.server.Site.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.resource.Resource.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.server.Request.getSession.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.server.Session.expire.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.resource.Resource.putChild.html

Twisted Documentation, Release 16.0.0

from twisted.web.resource import Resource

class ShowSession(Resource):
def render_GET(self, request):

return 'Your session id is: ' + request.getSession().uid

class ExpireSession(Resource):
def render_GET(self, request):

request.getSession().expire()
return 'Your session has been expired.'

resource = ShowSession()
resource.putChild("expire", ExpireSession())

Storing Objects in the Session

This example shows you how you can persist objects across requests in the session object.

As was discussed previously , instances of Session last as long as the notional session itself does. Each time Re-
quest.getSession is called, if the session for the request is still active, then the same Session instance is returned as
was returned previously. Because of this, Session instances can be used to keep other objects around for as long as
the session exists.

It’s easier to demonstrate how this works than explain it, so here’s an example:

>>> from zope.interface import Interface, Attribute, implements
>>> from twisted.python.components import registerAdapter
>>> from twisted.web.server import Session
>>> class ICounter(Interface):
... value = Attribute("An int value which counts up once per page view.")
...
>>> class Counter(object):
... implements(ICounter)
... def __init__(self, session):
... self.value = 0
...
>>> registerAdapter(Counter, Session, ICounter)
>>> ses = Session(None, None)
>>> data = ICounter(ses)
>>> print data
<__main__.Counter object at 0x8d535ec>
>>> print data is ICounter(ses)
True
>>>

What? , I hear you say.

What’s shown in this example is the interface and adaption-based API which Session exposes for persisting state.
There are several critical pieces interacting here:

• ICounter is an interface which serves several purposes. Like all interfaces, it documents the API of some
class of objects (in this case, just the value attribute). It also serves as a key into what is basically a dictionary
within the session object: the interface is used to store or retrieve a value on the session (the Counter instance,
in this case).

• Counter is the class which actually holds the session data in this example. It implements ICounter (again,
mostly for documentation purposes). It also has a value attribute, as the interface declared.

7.1. Developer Guides 423

https://twistedmatrix.com/documents/16.0.0/api/twisted.web.server.Session.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.server.Request.getSession.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.server.Request.getSession.html

Twisted Documentation, Release 16.0.0

• The registerAdapter call sets up the relationship between its three arguments so that adaption will do what we
want in this case.

• Adaption is performed by the expression ICounter(ses) . This is read as : adapt ses to ICounter .
Because of the registerAdapter call, it is roughly equivalent to Counter(ses) . However (because of
certain things Session does), it also saves the Counter instance created so that it will be returned the next
time this adaption is done. This is why the last statement produces True .

If you’re still not clear on some of the details there, don’t worry about it and just remember this: ICounter(ses)
gives you an object you can persist state on. It can be as much or as little state as you want, and you can use as few or
as many different Interface classes as you want on a single Session instance.

With those conceptual dependencies out of the way, it’s a very short step to actually getting persistent state into a
Twisted Web application. Here’s an example which implements a simple counter, re-using the definitions from the
example above:

from twisted.web.resource import Resource

class CounterResource(Resource):
def render_GET(self, request):

session = request.getSession()
counter = ICounter(session)
counter.value += 1
return "Visit #%d for you!" % (counter.value,)

Pretty simple from this side, eh? All this does is use Request.getSession and the adaption from above, plus
some integer math to give you a session-based visit counter.

Here’s the complete source for an rpy script based on this example:

cache()

from zope.interface import Interface, Attribute, implements
from twisted.python.components import registerAdapter
from twisted.web.server import Session
from twisted.web.resource import Resource

class ICounter(Interface):
value = Attribute("An int value which counts up once per page view.")

class Counter(object):
implements(ICounter)
def __init__(self, session):

self.value = 0

registerAdapter(Counter, Session, ICounter)

class CounterResource(Resource):
def render_GET(self, request):

session = request.getSession()
counter = ICounter(session)
counter.value += 1
return "Visit #%d for you!" % (counter.value,)

resource = CounterResource()

One more thing to note is the cache() call at the top of this example. As with the previous example where this
came up, this rpy script is stateful. This time, it’s the ICounter definition and the registerAdapter call that
need to be executed only once. If we didn’t use cache , every request would define a new, different interface named
ICounter . Each of these would be a different key in the session, so the counter would never get past one.

424 Chapter 7. Twisted Web

https://twistedmatrix.com/documents/16.0.0/api/twisted.python.components.registerAdapter.html

Twisted Documentation, Release 16.0.0

Session Endings

The previous two examples introduced Twisted Web’s session APIs. This included accessing the session object, storing
state on it, and retrieving it later, as well as the idea that the Session object has a lifetime which is tied to the notional
session it represents. This example demonstrates how to exert some control over that lifetime and react when it expires.

The lifetime of a session is controlled by the sessionTimeout attribute of the Session class. This attribute gives
the number of seconds a session may go without being accessed before it expires. The default is 15 minutes. In this
example we’ll change that to a different value.

One way to override the value is with a subclass:

from twisted.web.server import Session

class ShortSession(Session):
sessionTimeout = 60

To have Twisted Web actually make use of this session class, rather than the default, it is also necessary to override
the sessionFactory attribute of Site . We could do this with another subclass, but we could also do it to just one
instance of Site :

from twisted.web.server import Site

factory = Site(rootResource)
factory.sessionFactory = ShortSession

Sessions given out for requests served by this Site will use ShortSession and only last one minute without
activity.

You can have arbitrary functions run when sessions expire, too. This can be useful for cleaning up external re-
sources associated with the session, tracking usage statistics, and more. This functionality is provided via Ses-
sion.notifyOnExpire . It accepts a single argument: a function to call when the session expires. Here’s a trivial
example which prints a message whenever a session expires:

from twisted.web.resource import Resource

class ExpirationLogger(Resource):
sessions = set()

def render_GET(self, request):
session = request.getSession()
if session.uid not in self.sessions:

self.sessions.add(session.uid)
session.notifyOnExpire(lambda: self._expired(session.uid))

return ""

def _expired(self, uid):
print "Session", uid, "has expired."
self.sessions.remove(uid)

Keep in mind that using a method as the callback will keep the instance (in this case, the ExpirationLogger
resource) in memory until the session expires.

With those pieces in hand, here’s an example that prints a message whenever a session expires, and uses sessions
which last for 5 seconds:

from twisted.web.server import Site, Session
from twisted.web.resource import Resource
from twisted.internet import reactor

7.1. Developer Guides 425

https://twistedmatrix.com/documents/16.0.0/api/twisted.web.server.Session.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.server.Site.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.server.Session.notifyOnExpire.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.server.Session.notifyOnExpire.html

Twisted Documentation, Release 16.0.0

class ShortSession(Session):
sessionTimeout = 5

class ExpirationLogger(Resource):
sessions = set()

def render_GET(self, request):
session = request.getSession()
if session.uid not in self.sessions:

self.sessions.add(session.uid)
session.notifyOnExpire(lambda: self._expired(session.uid))

return ""

def _expired(self, uid):
print "Session", uid, "has expired."
self.sessions.remove(uid)

rootResource = Resource()
rootResource.putChild("logme", ExpirationLogger())
factory = Site(rootResource)
factory.sessionFactory = ShortSession

reactor.listenTCP(8080, factory)
reactor.run()

Since Site customization is required, this example can’t be rpy-based, so it brings back the manual
reactor.listenTCP and reactor.run calls. Run it and visit /logme to see it in action. Keep visiting it
to keep your session active. Stop visiting it for five seconds to see your session expiration message.

This set of examples contains short, complete applications of twisted.web. For subjects not covered here, see the
Twisted Web tutorial and the API documentation.

1. Serving static content from a directory

2. Generating a page dynamically

3. Static URL dispatch

4. Dynamic URL dispatch

5. Error handling

6. Custom response codes

7. Handling POSTs

8. Other request bodies

9. rpy scripts (or, how to save yourself some typing)

10. Asynchronous responses

11. Asynchronous responses (via Deferred)

12. Interrupted responses

13. Logging errors

14. Access logging

15. WSGIs

16. HTTP authentication

17. Session basics

426 Chapter 7. Twisted Web

https://twistedmatrix.com/documents/16.0.0/api/twisted.web.html

Twisted Documentation, Release 16.0.0

18. Storing objects in the session

19. Session endings

7.1.7 Light Weight Templating With Resource Templates

Overview

While high-level templating systems can be used with Twisted (for example, DivmodNevow , sometimes one needs
a less file-heavy system which lets one directly write HTML. While ResourceScript is available, it has a high coding
overhead, and requires some boring string arithmetic. ResourceTemplate fills the space between Nevow and Resource-
Script using Quixote’s PTL (Python Templating Language).

ResourceTemplates need Quixote installed. In Debian , that means installing the python-quixote package
(apt-get install python-quixote). Other operating systems require other ways to install Quixote, or
it can be done manually.

Configuring Twisted Web

The easiest way to get Twisted Web to support ResourceTemplates is to bind them to some extension using the web
tap’s --processor flag. Here is an example:

% twistd web --path=/var/www \
--processor=.rtl=twisted.web.script.ResourceTemplate

The above command line binds the rtl extension to use the ResourceTemplate processor. Other ways are possible,
but would require more Python coding and are outside the scope of this HOWTO.

Using ResourceTemplate

ResourceTemplates are coded in an extension of Python called the”Python Templating Language” . Complete docu-
mentation of the PTL is available at the quixote web site . The web server will expect the PTL source file to define a
variable named resource . This should be a twisted.web.resource.Resource , whose .render method be called.
Usually, you would want to define render using the keyword template rather than def .

Here is a simple example for a resource template.

webquote.rtl

from twisted.web.resource import Resource

def getQuote():
return "An apple a day keeps the doctor away."

class QuoteResource(Resource):

template render(self, request):
"""\
<html>
<head><title>Quotes Galore</title></head>

<body><h1>Quotes</h1>"""
getQuote()
"</body></html>"

7.1. Developer Guides 427

https://launchpad.net/nevow
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.script.ResourceScript.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.script.ResourceTemplate.html
http://www.debian.org
http://quixote.python.ca/quixote.dev/doc/PTL.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.resource.Resource.html

Twisted Documentation, Release 16.0.0

resource = QuoteResource()

7.1.8 Using the Twisted Web Client

Overview

This document describes how to use the HTTP client included in Twisted Web. After reading it, you should be able
to make HTTP and HTTPS requests using Twisted Web. You will be able to specify the request method, headers, and
body and you will be able to retrieve the response code, headers, and body.

A number of higher-level features are also explained, including proxying, automatic content encoding negotiation, and
cookie handling.

Prerequisites

This document assumes that you are familiar with Deferreds and Failures , and producers and consumers . It also
assumes you are familiar with the basic concepts of HTTP, such as requests and responses, methods, headers, and
message bodies. The HTTPS section of this document also assumes you are somewhat familiar with SSL and have
read about using SSL in Twisted .

The Agent

Issuing Requests

The twisted.web.client.Agent class is the entry point into the client API. Requests are issued using the request method,
which takes as parameters a request method, a request URI, the request headers, and an object which can produce the
request body (if there is to be one). The agent is responsible for connection setup. Because of this, it requires a reactor
as an argument to its initializer. An example of creating an agent and issuing a request using it might look like this:

request.py

from twisted.internet import reactor
from twisted.web.client import Agent
from twisted.web.http_headers import Headers

agent = Agent(reactor)

d = agent.request(
'GET',
'http://example.com/',
Headers({'User-Agent': ['Twisted Web Client Example']}),
None)

def cbResponse(ignored):
print 'Response received'

d.addCallback(cbResponse)

def cbShutdown(ignored):
reactor.stop()

d.addBoth(cbShutdown)

reactor.run()

428 Chapter 7. Twisted Web

https://twistedmatrix.com/documents/16.0.0/api/twisted.web.client.Agent.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.client.Agent.request.html

Twisted Documentation, Release 16.0.0

As may be obvious, this issues a new GET request for / to the web server on example.com . Agent is respon-
sible for resolving the hostname into an IP address and connecting to it on port 80 (for HTTP URIs), port 443 (for
HTTPS URIs), or on the port number specified in the URI itself. It is also responsible for cleaning up the connection
afterwards. This code sends a request which includes one custom header, User-Agent . The last argument passed to
Agent.request is None , though, so the request has no body.

Sending a request which does include a body requires passing an object providing twisted.web.iweb.IBodyProducer to
Agent.request . This interface extends the more general IPushProducer by adding a new length attribute and
adding several constraints to the way the producer and consumer interact.

• The length attribute must be a non-negative integer or the constant
twisted.web.iweb.UNKNOWN_LENGTH . If the length is known, it will be used to specify the
value for the Content-Length header in the request. If the length is unknown the attribute should be set to
UNKNOWN_LENGTH . Since more servers support Content-Length , if a length can be provided it should be.

• An additional method is required on IBodyProducer implementations: startProducing . This method
is used to associate a consumer with the producer. It should return a Deferred which fires when all data has
been produced.

• IBodyProducer implementations should never call the consumer’s unregisterProducer method. In-
stead, when it has produced all of the data it is going to produce, it should only fire the Deferred returned by
startProducing .

For additional details about the requirements of IBodyProducer implementations, see the API documentation.

Here’s a simple IBodyProducer implementation which writes an in-memory string to the consumer:

stringprod.py

from zope.interface import implements

from twisted.internet.defer import succeed
from twisted.web.iweb import IBodyProducer

class StringProducer(object):
implements(IBodyProducer)

def __init__(self, body):
self.body = body
self.length = len(body)

def startProducing(self, consumer):
consumer.write(self.body)
return succeed(None)

def pauseProducing(self):
pass

def stopProducing(self):
pass

This producer can be used to issue a request with a body:

sendbody.py

from twisted.internet import reactor
from twisted.web.client import Agent
from twisted.web.http_headers import Headers

from stringprod import StringProducer

7.1. Developer Guides 429

https://twistedmatrix.com/documents/16.0.0/api/twisted.web.iweb.IBodyProducer.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IPushProducer.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.iweb.IBodyProducer.html

Twisted Documentation, Release 16.0.0

agent = Agent(reactor)
body = StringProducer("hello, world")
d = agent.request(

'GET',
'http://example.com/',
Headers({'User-Agent': ['Twisted Web Client Example'],

'Content-Type': ['text/x-greeting']}),
body)

def cbResponse(ignored):
print 'Response received'

d.addCallback(cbResponse)

def cbShutdown(ignored):
reactor.stop()

d.addBoth(cbShutdown)

reactor.run()

If you want to upload a file or you just have some data in a string, you don’t have to copy StringProducer
though. Instead, you can use FileBodyProducer . This IBodyProducer implementation works with any file-like
object (so use it with a StringIO if your upload data is already in memory as a string); the idea is the same as
StringProducer from the previous example, but with a little extra code to only send data as fast as the server will
take it.

filesendbody.py

from StringIO import StringIO

from twisted.internet import reactor
from twisted.web.client import Agent
from twisted.web.http_headers import Headers

from twisted.web.client import FileBodyProducer

agent = Agent(reactor)
body = FileBodyProducer(StringIO("hello, world"))
d = agent.request(

'GET',
'http://example.com/',
Headers({'User-Agent': ['Twisted Web Client Example'],

'Content-Type': ['text/x-greeting']}),
body)

def cbResponse(ignored):
print 'Response received'

d.addCallback(cbResponse)

def cbShutdown(ignored):
reactor.stop()

d.addBoth(cbShutdown)

reactor.run()

FileBodyProducer closes the file when it no longer needs it.

If the connection or the request take too much time, you can cancel the Deferred returned by the Agent.request
method. This will abort the connection, and the Deferred will errback with CancelledError .

430 Chapter 7. Twisted Web

https://twistedmatrix.com/documents/16.0.0/api/twisted.web.client.FileBodyProducer.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.defer.CancelledError.html

Twisted Documentation, Release 16.0.0

Receiving Responses

So far, the examples have demonstrated how to issue a request. However, they have ignored the response, except for
showing that it is a Deferred which seems to fire when the response has been received. Next we’ll cover what that
response is and how to interpret it.

Agent.request , as with most Deferred -returning APIs, can return a Deferred which fires with a Failure
. If the request fails somehow, this will be reflected with a failure. This may be due to a problem looking up the host
IP address, or it may be because the HTTP server is not accepting connections, or it may be because of a problem
parsing the response, or any other problem which arises which prevents the response from being received. It does not
include responses with an error status.

If the request succeeds, though, the Deferred will fire with a Response . This happens as soon as all the response
headers have been received. It happens before any of the response body, if there is one, is processed. The Response
object has several attributes giving the response information: its code, version, phrase, and headers, as well as the
length of the body to expect. In addition to these, the Response also contains a reference to the request that it is a
response to; one particularly useful attribute on the request is absoluteURI : The absolute URI to which the request
was made. The Response object has a method which makes the response body available: deliverBody . Using the
attributes of the response object and this method, here’s an example which displays part of the response to a request:

response.py

from pprint import pformat

from twisted.internet import reactor
from twisted.internet.defer import Deferred
from twisted.internet.protocol import Protocol
from twisted.web.client import Agent
from twisted.web.http_headers import Headers

class BeginningPrinter(Protocol):
def __init__(self, finished):

self.finished = finished
self.remaining = 1024 * 10

def dataReceived(self, bytes):
if self.remaining:

display = bytes[:self.remaining]
print 'Some data received:'
print display
self.remaining -= len(display)

def connectionLost(self, reason):
print 'Finished receiving body:', reason.getErrorMessage()
self.finished.callback(None)

agent = Agent(reactor)
d = agent.request(

'GET',
'http://example.com/',
Headers({'User-Agent': ['Twisted Web Client Example']}),
None)

def cbRequest(response):
print 'Response version:', response.version
print 'Response code:', response.code
print 'Response phrase:', response.phrase
print 'Response headers:'

7.1. Developer Guides 431

https://twistedmatrix.com/documents/16.0.0/api/twisted.web.client.Response.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.iweb.IClientRequest.request.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.iweb.IClientRequest.absoluteURI.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.client.Response.deliverBody.html

Twisted Documentation, Release 16.0.0

print pformat(list(response.headers.getAllRawHeaders()))
finished = Deferred()
response.deliverBody(BeginningPrinter(finished))
return finished

d.addCallback(cbRequest)

def cbShutdown(ignored):
reactor.stop()

d.addBoth(cbShutdown)

reactor.run()

The BeginningPrinter protocol in this example is passed to Response.deliverBody and the response body
is then delivered to its dataReceived method as it arrives. When the body has been completely delivered, the pro-
tocol’s connectionLost method is called. It is important to inspect the Failure passed to connectionLost
. If the response body has been completely received, the failure will wrap a twisted.web.client.ResponseDone ex-
ception. This indicates that it is known that all data has been received. It is also possible for the failure to wrap
a twisted.web.http.PotentialDataLoss exception: this indicates that the server framed the response such that there is
no way to know when the entire response body has been received. Only HTTP/1.0 servers should behave this way.
Finally, it is possible for the exception to be of another type, indicating guaranteed data loss for some reason (a lost
connection, a memory error, etc).

Just as protocols associated with a TCP connection are given a transport, so will be a protocol passed to
deliverBody . Since it makes no sense to write more data to the connection at this stage of the request, though,
the transport only provides IPushProducer . This allows the protocol to control the flow of the response data: a call
to the transport’s pauseProducing method will pause delivery; a later call to resumeProducing will resume
it. If it is decided that the rest of the response body is not desired, stopProducing can be used to stop delivery
permanently; after this, the protocol’s connectionLost method will be called.

An important thing to keep in mind is that the body will only be read from the connection after
Response.deliverBody is called. This also means that the connection will remain open until this is done (and
the body read). So, in general, any response with a body must have that body read using deliverBody . If the
application is not interested in the body, it should issue a HEAD request or use a protocol which immediately calls
stopProducing on its transport.

If the body of the response isn’t going to be consumed incrementally, then readBody can be used to get the body
as a byte-string. This function returns a Deferred that fires with the body after the request has been completed;
cancelling this Deferred will close the connection to the HTTP server immediately.

responseBody.py

from sys import argv
from pprint import pformat

from twisted.internet.task import react
from twisted.web.client import Agent, readBody
from twisted.web.http_headers import Headers

def cbRequest(response):
print 'Response version:', response.version
print 'Response code:', response.code
print 'Response phrase:', response.phrase
print 'Response headers:'
print pformat(list(response.headers.getAllRawHeaders()))
d = readBody(response)
d.addCallback(cbBody)
return d

432 Chapter 7. Twisted Web

https://twistedmatrix.com/documents/16.0.0/api/twisted.web.client.ResponseDone.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.http.PotentialDataLoss.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.interfaces.IPushProducer.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.client.readBody.html

Twisted Documentation, Release 16.0.0

def cbBody(body):
print 'Response body:'
print body

def main(reactor, url=b"http://example.com/"):
agent = Agent(reactor)
d = agent.request(

'GET', url,
Headers({'User-Agent': ['Twisted Web Client Example']}),
None)

d.addCallback(cbRequest)
return d

react(main, argv[1:])

HTTP over SSL

Everything you’ve read so far applies whether the scheme of the request URI is HTTP or HTTPS . However, to control
the SSL negotiation performed when an HTTPS URI is requested, there’s one extra object to pay attention to: the SSL
context factory.

Agent ‘s constructor takes an optional second argument, a context factory. This is an object like the context factory
described in Using SSL in Twisted but has one small difference. The getContext method of this factory accepts
the address from the URL being requested. This allows it to return a context object which verifies that the server’s
certificate matches the URL being requested.

Here’s an example which shows how to use Agent to request an HTTPS URL with no certificate verification.

from twisted.python.log import err
from twisted.web.client import Agent
from twisted.internet import reactor
from twisted.internet.ssl import ClientContextFactory

class WebClientContextFactory(ClientContextFactory):
def getContext(self, hostname, port):

return ClientContextFactory.getContext(self)

def display(response):
print "Received response"
print response

def main():
contextFactory = WebClientContextFactory()
agent = Agent(reactor, contextFactory)
d = agent.request("GET", "https://example.com/")
d.addCallbacks(display, err)
d.addCallback(lambda ignored: reactor.stop())
reactor.run()

if __name__ == "__main__":
main()

The important point to notice here is that getContext now accepts two arguments, a hostname and a port number.
These two arguments, a str and an int , give the address to which a connection is being established to request an
HTTPS URL. Because an agent might make multiple requests over a single connection, getContext may not be
called once for each request. A second or later request for a URL with the same hostname as a previous request may
re-use an existing connection, and therefore will re-use the previously returned context object.

7.1. Developer Guides 433

Twisted Documentation, Release 16.0.0

To configure SSL options or enable certificate verification or hostname checking, provide a context factory which
creates suitably configured context objects.

HTTP Persistent Connection

HTTP persistent connections use the same TCP connection to send and receive multiple HTTP requests/responses.
This reduces latency and TCP connection establishment overhead.

The constructor of twisted.web.client.Agent takes an optional parameter pool, which should be an instance of
HTTPConnectionPool , which will be used to manage the connections. If the pool is created with the parameter
persistent set to True (the default), it will not close connections when the request is done, and instead hold them
in its cache to be re-used.

Here’s an example which sends requests over a persistent connection:

from twisted.internet import reactor
from twisted.internet.defer import Deferred, DeferredList
from twisted.internet.protocol import Protocol
from twisted.web.client import Agent, HTTPConnectionPool

class IgnoreBody(Protocol):
def __init__(self, deferred):

self.deferred = deferred

def dataReceived(self, bytes):
pass

def connectionLost(self, reason):
self.deferred.callback(None)

def cbRequest(response):
print 'Response code:', response.code
finished = Deferred()
response.deliverBody(IgnoreBody(finished))
return finished

pool = HTTPConnectionPool(reactor)
agent = Agent(reactor, pool=pool)

def requestGet(url):
d = agent.request('GET', url)
d.addCallback(cbRequest)
return d

Two requests to the same host:
d = requestGet('http://localhost:8080/foo').addCallback(

lambda ign: requestGet("http://localhost:8080/bar"))
def cbShutdown(ignored):

reactor.stop()
d.addCallback(cbShutdown)

reactor.run()

Here, the two requests are to the same host, one after the each other. In most cases, the same connection will be used
for the second request, instead of two different connections when using a non-persistent pool.

434 Chapter 7. Twisted Web

https://twistedmatrix.com/documents/16.0.0/api/twisted.web.client.Agent.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.client.HTTPConnectionPool.html

Twisted Documentation, Release 16.0.0

Multiple Connections to the Same Server

twisted.web.client.HTTPConnectionPool instances have an attribute called maxPersistentPerHostwhich limits
the number of cached persistent connections to the same server. The default value is 2. This is effective only when the
persistent option is True. You can change the value like bellow:

from twisted.web.client import HTTPConnectionPool

pool = HTTPConnectionPool(reactor, persistent=True)
pool.maxPersistentPerHost = 1

With the default value of 2, the pool keeps around two connections to the same host at most. Eventually the cached
persistent connections will be closed, by default after 240 seconds; you can change this timeout value with the
cachedConnectionTimeout attribute of the pool. To force all connections to close use the closeCachedCon-
nections method.

Automatic Retries If a request fails without getting a response, and the request is something that hopefully can be
retried without having any side-effects (e.g. a request with method GET), it will be retried automatically when sending
a request over a previously-cached persistent connection. You can disable this behavior by setting retryAutomatically
to False . Note that each request will only be retried once.

Following redirects

By itself, Agent doesn’t follow HTTP redirects (responses with 301, 302, 303, 307 status codes and a location
header field). You need to use the twisted.web.client.RedirectAgent class to do so. It implements a rather strict
behavior of the RFC, meaning it will redirect 301 and 302 as 307, only on GET and HEAD requests.

The following example shows how to have a redirect-enabled agent.

from twisted.python.log import err
from twisted.web.client import Agent, RedirectAgent
from twisted.internet import reactor

def display(response):
print "Received response"
print response

def main():
agent = RedirectAgent(Agent(reactor))
d = agent.request("GET", "http://example.com/")
d.addCallbacks(display, err)
d.addCallback(lambda ignored: reactor.stop())
reactor.run()

if __name__ == "__main__":
main()

In contrast, twisted.web.client.BrowserLikeRedirectAgent implements more lenient behaviour that closely emulates
what web browsers do; in other words 301 and 302 POST redirects are treated like 303, meaning the method is changed
to GET before making the redirect request.

As mentioned previously, Response contains a reference to both the request that it is a response to, and the previously
received response , accessible by previousResponse . In most cases there will not be a previous response, but in the
case of RedirectAgent the response history can be obtained by following the previous responses from response to
response.

7.1. Developer Guides 435

https://twistedmatrix.com/documents/16.0.0/api/twisted.web.client.HTTPConnectionPool.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.client.HTTPConnectionPool.persistent.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.client.HTTPConnectionPool.closeCachedConnections.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.client.HTTPConnectionPool.closeCachedConnections.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.client.HTTPConnectionPool.retryAutomatically.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.client.RedirectAgent.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.client.BrowserLikeRedirectAgent.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.client.Response.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.iweb.IClientRequest.request.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.client.Response.response.html
https://twistedmatrix.com/documents/16.0.0/api/previousResponse.html

Twisted Documentation, Release 16.0.0

Using a HTTP proxy

To be able to use HTTP proxies with an agent, you can use the twisted.web.client.ProxyAgent class. It supports the
same interface as Agent, but takes the endpoint of the proxy as initializer argument. This is specifically intended for
talking to servers that implement the proxying variation of the HTTP protocol; for other types of proxies you will want
Agent.usingEndpointFactory (see documentation below).

Here’s an example demonstrating the use of an HTTP proxy running on localhost:8000.

from twisted.python.log import err
from twisted.web.client import ProxyAgent
from twisted.internet import reactor
from twisted.internet.endpoints import TCP4ClientEndpoint

def display(response):
print "Received response"
print response

def main():
endpoint = TCP4ClientEndpoint(reactor, "localhost", 8000)
agent = ProxyAgent(endpoint)
d = agent.request("GET", "https://example.com/")
d.addCallbacks(display, err)
d.addCallback(lambda ignored: reactor.stop())
reactor.run()

if __name__ == "__main__":
main()

Please refer to the endpoints documentation for more information about how they work and the
twisted.internet.endpoints API documentation to learn what other kinds of endpoints exist.

Handling HTTP cookies

An existing agent instance can be wrapped with twisted.web.client.CookieAgent to automatically store, send and track
HTTP cookies. A CookieJar instance, from the Python standard library module cookielib , is used to store the
cookie information. An example of using CookieAgent to perform a request and display the collected cookies
might look like this:

cookies.py

from cookielib import CookieJar

from twisted.internet import reactor
from twisted.python import log
from twisted.web.client import Agent, CookieAgent

def displayCookies(response, cookieJar):
print 'Received response'
print response
print 'Cookies:', len(cookieJar)
for cookie in cookieJar:

print cookie

def main():
cookieJar = CookieJar()
agent = CookieAgent(Agent(reactor), cookieJar)

436 Chapter 7. Twisted Web

https://twistedmatrix.com/documents/16.0.0/api/twisted.web.client.ProxyAgent.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.client.Agent.usingEndpointFactory.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.internet.endpoints.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.client.CookieAgent.html
http://docs.python.org/library/cookielib.html

Twisted Documentation, Release 16.0.0

d = agent.request('GET', 'http://www.google.com/')
d.addCallback(displayCookies, cookieJar)
d.addErrback(log.err)
d.addCallback(lambda ignored: reactor.stop())
reactor.run()

if __name__ == "__main__":
main()

Automatic Content Encoding Negotiation

twisted.web.client.ContentDecoderAgent adds support for sending Accept-Encoding request headers and interpret-
ing Content-Encoding response headers. These headers allow the server to encode the response body somehow,
typically with some compression scheme to save on transfer costs. ContentDecoderAgent provides this func-
tionality as a wrapper around an existing agent instance. Together with one or more decoder objects (such as
twisted.web.client.GzipDecoder), this wrapper automatically negotiates an encoding to use and decodes the response
body accordingly. To application code using such an agent, there is no visible difference in the data delivered.

gzipdecoder.py

from twisted.python import log
from twisted.internet import reactor
from twisted.internet.defer import Deferred
from twisted.internet.protocol import Protocol
from twisted.web.client import Agent, ContentDecoderAgent, GzipDecoder

class BeginningPrinter(Protocol):
def __init__(self, finished):

self.finished = finished
self.remaining = 1024 * 10

def dataReceived(self, bytes):
if self.remaining:

display = bytes[:self.remaining]
print 'Some data received:'
print display
self.remaining -= len(display)

def connectionLost(self, reason):
print 'Finished receiving body:', reason.type, reason.value
self.finished.callback(None)

def printBody(response):
finished = Deferred()
response.deliverBody(BeginningPrinter(finished))
return finished

def main():
agent = ContentDecoderAgent(Agent(reactor), [('gzip', GzipDecoder)])

d = agent.request('GET', 'http://www.yahoo.com/')

7.1. Developer Guides 437

https://twistedmatrix.com/documents/16.0.0/api/twisted.web.client.ContentDecoderAgent.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.client.GzipDecoder.html

Twisted Documentation, Release 16.0.0

d.addCallback(printBody)
d.addErrback(log.err)
d.addCallback(lambda ignored: reactor.stop())
reactor.run()

if __name__ == "__main__":
main()

Implementing support for new content encodings is as simple as writing a new class like GzipDecoder that can
decode a response using the new encoding. As there are not many content encodings in widespread use, gzip is the
only encoding supported by Twisted itself.

Connecting To Non-standard Destinations

Typically you want your HTTP client to open a TCP connection directly to the web server. Sometimes how-
ever it’s useful to be able to connect some other way, e.g. making an HTTP request over a SOCKS proxy con-
nection or connecting to a server listening on a UNIX socket. For this reason, there is an alternate constructor
called Agent.usingEndpointFactory that takes an endpointFactory argument. This argument must provide the
twisted.web.iweb.IAgentEndpointFactory interface. Note that when talking to a HTTP proxy, i.e. a server that imple-
ments the proxying-specific variant of HTTP you should use ProxyAgent - see documentation above.

endpointconstructor.py

Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

"""
Send a HTTP request to Docker over a Unix socket.

Will probably need to be run as root.

Usage:
$ sudo python endpointconstructor.py [<docker API path>]

"""

from __future__ import print_function

from sys import argv

from zope.interface import implementer

from twisted.internet.endpoints import UNIXClientEndpoint
from twisted.internet.task import react
from twisted.web.iweb import IAgentEndpointFactory
from twisted.web.client import Agent, readBody

@implementer(IAgentEndpointFactory)
class DockerEndpointFactory(object):

"""
Connect to Docker's Unix socket.
"""
def __init__(self, reactor):

self.reactor = reactor

def endpointForURI(self, uri):

438 Chapter 7. Twisted Web

https://twistedmatrix.com/documents/16.0.0/api/twisted.web.client.Agent.usingEndpointFactory.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.iweb.IAgentEndpointFactory.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.client.ProxyAgent.html

Twisted Documentation, Release 16.0.0

return UNIXClientEndpoint(self.reactor, b"/var/run/docker.sock")

def main(reactor, path=b"/containers/json?all=1"):
agent = Agent.usingEndpointFactory(reactor, DockerEndpointFactory(reactor))
d = agent.request(b'GET', b"unix://localhost" + path)
d.addCallback(readBody)
d.addCallback(print)
return d

react(main, argv[1:])

Conclusion

You should now understand the basics of the Twisted Web HTTP client. In particular, you should understand:

• How to issue requests with arbitrary methods, headers, and bodies.

• How to access the response version, code, phrase, headers, and body.

• How to store, send, and track cookies.

• How to control the streaming of the response body.

• How to enable the HTTP persistent connection, and control the number of connections.

7.1.9 Glossary

This glossary is very incomplete. Contributions are welcome. resource

An object accessible via HTTP at one or more URIs. In Twisted Web, a resource is repre-
sented by an object which provides twisted.web.resource.IResource and most often is a subclass of
twisted.web.resource.Resource . For example, here is a resource which represents a simple HTML greet-
ing.

from twisted.web.resource import Resource

class Greeting(Resource):
def render_GET(self, request):

return "

• Introduction

– Overview of Twisted Web

• Web Applications

– Using twisted.web

– Web application development

– HTML Templating with twisted.web.template

– XML-RPC and SOAP

– Twisted Web in 60 Seconds: A series of short, complete examples using twisted.web

– Quixote resource templates

• Other

7.1. Developer Guides 439

https://twistedmatrix.com/documents/16.0.0/api/twisted.web.resource.IResource.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.web.resource.Resource.html

Twisted Documentation, Release 16.0.0

– Using the Twisted Web Client

• Appendix

– Glossary

7.2 Examples

7.2.1 twisted.web.client

• getpage.py - use twisted.web.client.getPage to download a web page.

• dlpage.py - add callbacks to twisted.web.client.downloadPage to display errors that occur when
downloading a web page

7.2.2 XML-RPC

• xmlrpc.pyXML-RPC server with several methods, including echoing, faulting, returning deferreds and failed
deferreds

• xmlrpcclient.py - use twisted.web.xmlrpc.Proxy to call remote XML-RPC methods

• advogato.py - use twisted.web.xmlrpc to post a diary entry to advogato.org; requires an advogato
account

7.2.3 Virtual hosts and proxies

• proxy.py - use twisted.web.proxy.Proxy to make the simplest proxy

• logging-proxy.py - example of subclassing the core classes of twisted.web.proxy to log requests
through a proxy

• reverse-proxy.py - use twisted.web.proxy.ReverseProxyResource to make any HTTP re-
quest to the proxy port get applied to a specified website

• rootscript.py - example use of twisted.web.vhost.NameVirtualHost

• web.py - an example of both using the processors attribute to set how certain file types are treated and
using twisted.web.vhost.VHostMonsterResource to reverse proxy

7.2.4 .rpys and ResourceTemplate

• hello.rpy.py - use twisted.web.static to create a static resource to serve

• fortune.rpy.py - create a resource that returns the output of a process run on the server

• report.rpy.py - display various properties of a resource, including path, host, and port

• users.rpy.py - use twisted.web.distrib to publish user directories as for a “community web site”

• simple.rtl - example use of twisted.web.resource.ResourceTemplate

440 Chapter 7. Twisted Web

Twisted Documentation, Release 16.0.0

7.2.5 Miscellaneous

• webguard.py - pairing twisted.web with twisted.cred to guard resources against unauthenticated
users

• silly-web.py - bare-bones distributed web setup with a master and slave using twisted.web.distrib
and twisted.spread.pb

• soap.py - use twisted.web.soap to publish SOAP methods

• Developer guides: documentation on using Twisted Web to develop your own applications

• Examples: short code examples using Twisted Web

7.2. Examples 441

Twisted Documentation, Release 16.0.0

442 Chapter 7. Twisted Web

CHAPTER 8

Twisted Words

8.1 Developer Guides

8.1.1 Overview of Twisted IM

Twisted IM (Instance Messenger) is a multi-protocol chat framework, based on the Twisted framework we’ve all come
to know and love. It’s fairly simple and extensible in two directions - it’s pretty easy to add new protocols, and it’s
also quite easy to add new front-ends.

Code flow

AccountManager

The control flow starts at the relevant subclass of baseaccount.AccountManager . The AccountManager is responsi-
ble for, well, managing accounts - remembering what accounts are available, their settings, adding and removal of
accounts, and making accounts log on at startup.

This would be a good place to start your interface, load a list of accounts from disk and tell them to login. Most of the
method names in AccountManager are pretty self-explanatory, and your subclass can override whatever it wants, but
you need to override __init__ . Something like this:
...

def __init__(self):
self.chatui = ... # Your subclass of basechat.ChatUI
self.accounts = ... # Load account list
for a in self.accounts:

a.logOn(self.chatui)

ChatUI

Account objects talk to the user via a subclass of basechat.ChatUI . This class keeps track of all the various conversa-
tions that are currently active, so that when an account receives and incoming message, it can put that message in its
correct context.

How much of this class you need to override depends on what you need to do. You will need to override
getConversation (a one-on-one conversation, like an IRC DCC chat) and getGroupConversation (a mul-
tiple user conversation, like an IRC channel). You might want to override getGroup and getPerson .

The main problem with the default versions of the above routines is that they take a parameter, Class , which defaults
to an abstract implementation of that class - for example, getConversation has a Class parameter that defaults

443

https://twistedmatrix.com/documents/16.0.0/api/twisted.words.im.baseaccount.AccountManager.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.words.im.baseaccount.AccountManager.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.words.im.basechat.ChatUI.html

Twisted Documentation, Release 16.0.0

to basechat.Conversation which raises a lot of NotImplementedError s. In your subclass, override the method
with a new method whose Class parameter defaults to your own implementation of Conversation , that simply
calls the parent class’ implementation.

Conversation and GroupConversation

These classes are where your interface meets the chat protocol. Chat protocols get a message, find the appropriate
Conversation or GroupConversation object, and call its methods when various interesting things happen.

Override whatever methods you want to get the information you want to display. You must override
the hide and show methods, however - they are called frequently and the default implementation raises
NotImplementedError .

Accounts

An account is an instance of a subclass of basesupport.AbstractAccount . For more details and sample code, see the
various *support files in twisted.words.im .

8.1.2 Using the Twisted IRC Client

A complete howto would explain how to actually use the IRC client. However, until that howto is written, here is a
howto that explains how to do text formatting for IRC.

Text formatting

The text formatting support in Twisted Words is based on the widely used mIRC format which supports bold, underline,
reverse video and colored text; nesting these attributes is also supported.

Creating formatted text

The API used for creating formatted text in the IRC client is almost the same as that used by Twisted
insults . Text attributes are built up by accessing and indexing attributes on a special module-level at-
tribute, twisted.words.protocols.irc.attributes , multiple values can be passed when indexing attributes to
mix text with nested text attributes. The resulting object can then be serialized to formatted text, with
twisted.words.protocols.irc.assembleFormattedText , suitable for use with any of the IRC client messaging functions.

Bold, underline and reverse video attributes

Bold, underline and reverse video attributes are just flags and are the simplest text attributes to apply. They are accessed
by the names bold , underline and reverseVideo , respectively, on twisted.words.protocols.irc.attributes . For
example, messaging someone the bold and underlined text “Hello world!”:

from twisted.words.protocols.irc import assembleFormattedText, attributes as A

Message "someone" the bold and underlined text "Hello world!"
anIRCClient.msg('someone', assembleFormattedText(

A.bold[
A.underline['Hello world!']])

444 Chapter 8. Twisted Words

https://twistedmatrix.com/documents/16.0.0/api/twisted.words.im.basechat.Conversation.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.words.im.basesupport.AbstractAccount.html
http://www.mirc.com/
https://twistedmatrix.com/documents/16.0.0/api/twisted.conch.insults.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.words.protocols.irc.attributes.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.words.protocols.irc.assembleFormattedText.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.words.protocols.irc.attributes.html

Twisted Documentation, Release 16.0.0

The “normal” attribute

At first glance a text attribute called “normal” that does not apply any unusual text attributes may not seem that special
but it can be quite useful, both as a container:

A.normal[
'This is normal text. ',
A.bold['This is bold text! '],
'Back to normal',
A.underline['This is underlined text!']]

And also as a way to temporarily disable text attributes without having to close and respecify all text attributes for a
brief piece of text:

A.normal[
A.reverseVideo['This is reverse, ', A.normal['except for this'], ', text']]

It is worth noting that assembled text will always begin with the control code to disable other attributes for the sake of
correctness.

Color attributes

Since colors for both the foreground and background can be specified with IRC text formatting another level of attribute
access is introduced. Firstly the foreground or background, through the fg and bg attribute names respectively, is
accessed and then the color name is accessed. The available color attribute names are:

• white

• black

• blue

• green

• lightRed

• red

• magenta

• orange

• yellow

• lightGreen

• cyan

• lightCyan

• lightBlue

• lightMagenta

• gray

• lightGray

It is possible to nest foreground and background colors to alter both for a single piece of text. For example to display
black on green text:

A.fg.black[A.bg.green['Like a terminal!']]

8.1. Developer Guides 445

Twisted Documentation, Release 16.0.0

Parsing formatted text

Most IRC clients format text so it is logical that you may want to parse this formatted text.
twisted.words.protocols.irc.parseFormattedText will parse text into structured text attributes. It is worth noting that
while feeding the output of parseFormattedText back to assembleFormattedText will produce the same
final result, the actual structure of the parsed text will differ. Color codes are mapped from 0 to 15, codes greater than
15 will begin to wrap around.

Removing formatting

In some cases, such as an automaton handling user input from IRC, it is desirable to have all formatting stripped from
text. This can be accomplished with twisted.words.protocols.irc.stripFormatting .

8.1.3 Communicating With IRC Clients

Communicating with clients is the whole point of an IRC server, so you want to make sure you’re doing it properly.
Today, we’ll be looking at receiving messages from a client and sending messages to the client.

Representing Clients in Twisted

Users in Twisted IRC are represented as subclasses of the IRC class. This works as the protocol for your Factory class.
It will also give you IRC features (like automatically parsing incoming lines) without you having to implement them
yourself. The rest of this guide assumes this setup.

Sending Messages

Messages are sent to users using the user object’s sendMessage method.

Sending Basic Messages

The basic syntax for sending messages to users is as follows:

user.sendCommand("COMMAND", (param1, param2), server.name)

The prefix keyword argument is optional, and it may be omitted to send a message without a prefix (for example, the
ERROR command). The command is whatever command you plan to send, e.g. “PRIVMSG”, “MODE”, etc. All
arguments following the command are the parameters you want to send for the command. If the last argument needs
to be prefixed with a colon (because it has spaces in it, e.g. a PRIVMSG message), you must add the colon to the
beginning of the parameter yourself. For example: .. code-block:: python

user.sendCommand(“PRIVMSG”, (user.nickname, ”:{}”.format(message)), sendingUser.hostmask)

Sending Messages with Tags

Twisted also allows sending message tags as specified in IRCv3.

Let’s say, for example, that your server has a feature to play back a little bit of previous channel content when someone
joins a channel. You want a way to tell people when this message occurred. The best way to provide this information
is through the server-time specification.

Let’s say you’re storing past messages in a channel object in some structure like this:

446 Chapter 8. Twisted Words

https://twistedmatrix.com/documents/16.0.0/api/twisted.words.protocols.irc.parseFormattedText.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.words.protocols.irc.stripFormatting.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.words.protocols.irc.IRC.html
https://twistedmatrix.com/documents/16.0.0/api/twisted.words.protocols.irc.IRC.sendMessage.html
https://ircv3.net/specs/core/message-tags-3.2.html
http://ircv3.net/specs/extensions/server-time-3.2.html

Twisted Documentation, Release 16.0.0

channel.pastMessages = [
("I sent some text!", "author!ident@host", datetime object representing the when the message was sent),
("I did, too!", "someone-else!ident@host", another datetime object)

]

Your actual implementation may vary. I went with something simple here. The times of the messages would be
generated using something like datetime.utcnow() when the message was received.

Tags are passed as a list of tuples. If you’re sending a number of tags, you may have an existing tag dictionary. You
can simply add to it (assuming message is the loop variable for channel.pastMessages above):

sendingTags["server-time"] = "{}Z".format(message[2].isoformat()[:-3])

This will generate the required time format and add it to the tag dictionary. The last three characters that we remove
are the microseconds; removing the last three digits changes the precision to milliseconds.

Once your tags are collected, you can send the message. The tag dictionary is passed using the tags argument (in the
same loop as above):

user.sendCommand("PRIVMSG", (user.nickname, message[0]), message[1], sendingTags)

Receiving Messages

Twisted Words will handle receiving messages and parsing lines into tokens. The parsed messages are passed into
your command through the user’s handleCommand method.

Handling Commands

The default IRC handleCommand method calls the irc_COMMANDmethod when it receives the command COMMAND,
and it calls irc_unknown if the method for the command received isn’t defined.

from twisted.words.protocols import irc

class IRCUser(irc.IRC):
possibly other definitions here
def irc_unknown(self, prefix, command, params):

self.sendCommand(irc.ERR_UNKNOWNCOMMAND, (command, ":Unknown command"), server.name)

def irc_PRIVMSG(self, prefix, params):
do some stuff to handle PRIVMSG for your server's setup

lots of other command definitions

If you have a server setup that doesn’t allow you to do this (e.g. a modular server program), you may, of course,
override the handleCommand function to route commands to your own handlers.

Receiving Messages with Tags

This has not yet been implemented.

• Twisted IM

• IRC

– Using the Twisted Words IRC client

– IRC Servers: Communicating With Clients

8.1. Developer Guides 447

https://twistedmatrix.com/documents/16.0.0/api/twisted.words.protocols.irc.IRC.handleCommand.html

Twisted Documentation, Release 16.0.0

8.2 Examples

• ircLogBot.py - connects to an IRC server and logs all messages

• minchat.py - log bot using twisted.im

• msn_example.py

• oscardemo.py

• jabber_client.py

• pb_client.py

• xmpp_client.py

• cursesclient.py - trivial curses-based IRC client

• Developer guides: documentation on using Twisted Words to develop your own applications

• Examples: short code examples using Twisted Words

448 Chapter 8. Twisted Words

CHAPTER 9

Historical Documents

Here are documents which contain no pertinent information or documentation. People from the Twisted team have
published them, and they serve as interesting land marks and thoughts. Please don’t look here for documentation –
however, if you are interested in the history of Twisted, or want to quote from these documents, feel free. Remember,
however – the documents here may contain wrong information – they are not updated as Twisted is, to keep their
historical value intact.

9.1 2003

9.1.1 Python Community Conference

These papers were part of the Python Community Conference (PyCon) in March of 2003.

Generalization of Deferred Execution in Python

A deceptively simple architectural challenge faced by many multi-tasking applications is gracefully doing
nothing. Systems that must wait for the results of a long-running process, network message, or database
query while continuing to perform other tasks must establish conventions for the semantics of waiting.
The simplest of these is blocking in a thread, but it has significant scalability problems. In asynchronous
frameworks, the most common approach is for long-running methods to accept a callback that will be
executed when the command completes. These callbacks will have different signatures depending on the
nature of the data being requested, and often, a great deal of code is necessary to glue one portion of an
asynchronous networking system to another. Matters become even more complicated when a developer
wants to wait for two different events to complete, requiring the developer to “juggle” the callbacks and
create a third, mutually incompatible callback type to handle the final result.

This paper describes the mechanism used by the Twisted framework for waiting for the results of long-
running operations. This mechanism, the Deferred , handles the often-neglected problems of error
handling, callback juggling, inter-system communication and code readability.

Applications of the Twisted Framework

Two projects developed using the Twisted framework are described; one, Twisted.names, which is in-
cluded as part of the Twisted distribution, a domain name server and client API, and one, Pynfo, which is
packaged separately, a network information robot.

Twisted Conch: SSH in Python with Twisted

Conch is an implementation of the Secure Shell Protocol (currently in the IETF standarization process).
Secure Shell (or SSH) is a popular protocol for remote shell access, file management and port forwarding
protected by military-grade security. SSH supports multiple encryption and compression protocols for the
wire transports, and a flexible system of multiplexed channels on top. Conch uses the Twisted networking

449

http://python.org/pycon/

Twisted Documentation, Release 16.0.0

framework to supply a library which can be used to implement both SSH clients and servers. In addition,
it also contains several ready made client programs, including a drop-in replacement for the OpenSSH
program from the OpenBSD project.

The Lore Document Generation Framework

Lore is a documentation generation system which uses a limited subset of XHTML, together with some
class attributes, as its source format. This allows for lower barrier of entry than many other similar
systems, since HTML authoring tools are plentiful as is knowledge of HTML writing. As an added
advantage, the source format is viewable directly, so that even if Lore is not available the documentation
is useful. It currently outputs LaTeX and HTML, which allows for most use-cases.

Perspective Broker: “Translucent” Remote Method calls in Twisted

One of the core services provided by the Twisted networking framework is “Perspective Broker” , which
provides a clean, secure, easy-to-use Remote Procedure Call (RPC) mechanism. This paper explains the
novel features of PB, describes the security model and its implementation, and provides brief examples of
usage.

Managing the Release of a Large Python Project

Twisted is a Python networking framework. At last count, the project contains nearly 60,000 lines of
effective code (not comments or blank lines). When preparing a release, many details must be checked,
and many steps must be followed. We describe here the technologies and tools we use, and explain how
we built tools on top of them which help us make releasing as painless as possible.

Twisted Reality: A Flexible Framework for Virtual Worlds

Flexibly modelling virtual worlds in object-oriented languages has historically been difficult; the issues
arising from multiple inheritance and order-of-execution resolution have limited the sophistication of
existing object-oriented simulations. Twisted Reality avoids these problems by reifying both actions and
relationships, and avoiding inheritance in favor of automated composition through adapters and interfaces.

9.2 Previously

• The paper Glyph and Moshe presented in IPC10

• The errata published in IPC10 against the paper.

• A paper Moshe wrote about Twisted and Debian.

450 Chapter 9. Historical Documents

Index

R
RFC

RFC 1034#section-5.2.1, 360
RFC 3596#section-2.5, 360
RFC 865, 6

451

	Installing Twisted
	Installing Optional Dependencies

	Twisted Core
	Developer Guides
	Examples
	Specifications
	Development of Twisted

	Twisted Conch
	Developer Guides
	Examples

	Twisted Mail
	Examples
	Developer Guides
	Twisted Mail Tutorial: Building an SMTP Client from Scratch

	Twisted Names
	Developer Guides
	Examples

	Twisted Pair
	Developer Guides
	Examples

	Twisted Web
	Developer Guides
	Examples

	Twisted Words
	Developer Guides
	Examples

	Historical Documents
	2003
	Previously

